Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G
    PMID: 26219478 DOI: 10.1016/j.cbpa.2015.07.011
    Interacting effects of feeding and stress on corticoid responses in fish were investigated in common carp fed 3.0% or 0.5% body mass (BM) which received no implant, a sham or a cortisol implant (250 mg/kg BM) throughout a 168 hour post-implant period (168 h-PI). At 12h-PI, cortisol implants elevated plasma cortisol, glucose and lactate. Plasma osmolality and ions remained stable, but cortisol increased gill and kidney Na(+)/K(+) ATPase (NKA) and H(+) ATPase activities. Gill NKA activities were higher at 3%-BM, whereas kidney H(+) ATPase activity was greater at 0.5%-BM. Cortisol induced liver protein mobilization and repartitioned liver and muscle glycogen. At 3%-BM, this did not increase plasma ammonia, reflecting improved excretion efficiency concomitant with upregulation of Rhesus glycoprotein Rhcg-1 in gill. Responses in glucocorticoid receptors (GR1/GR2) and mineralocorticoid receptor (MR) to cortisol elevation were most prominent in kidney with increased expression of all receptors at 24 h-PI at 0.5%-BM, but only GR2 and MR at 0.5%-BM. In the liver, upregulation of all receptors occurred at 24 h-PI at 3%-BM, whilst only GR2 and MR were upregulated at 0.5%-BM. In the gill, there was a limited upregulation: GR2 and MR at 72 h-PI and GR1 at 168 h-PI at 3%-BM but only GR2 at 72 h-PI at 0.5%-BM. Thus cortisol elevation led to similar expression patterns of cortisol receptors in both feeding regimes, while feeding affected the type of receptor that was induced. Induction of corticoid receptors occurred simultaneously with increases in Rhcg-1 mRNA expression (gill) but well after NKA and H(+) ATPase activities increased (gill/kidney).
    Matched MeSH terms: Glycogen/metabolism
  2. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT
    Br J Nutr, 2012 Oct;108(7):1194-201.
    PMID: 22152092
    Zingiber officinale (ZO), commonly known as ginger, has been traditionally used in the treatment of diabetes mellitus. Several studies have reported the hypoglycaemic properties of ginger in animal models. The present study evaluated the antihyperglycaemic effect of its aqueous extract administered orally (daily) in three different doses (100, 300, 500 mg/kg body weight) for a period of 30 d to streptozotocin (STZ)-induced diabetic rats. A dose-dependent antihyperglycaemic effect revealed a decrease of plasma glucose levels by 38 and 68 % on the 15th and 30th day, respectively, after the rats were given 500 mg/kg. The 500 mg/kg ZO significantly (P<0·05) decreased kidney weight (% body weight) in ZO-treated diabetic rats v. control rats, although the decrease in liver weight (% body weight) was not statistically significant. Kidney glycogen content increased significantly (P<0·05) while liver and skeletal muscle glycogen content decreased significantly (P<0·05) in diabetic controls v. normal controls. ZO (500 mg/kg) also significantly decreased kidney glycogen (P<0·05) and increased liver and skeletal muscle glycogen in STZ-diabetic rats when compared to diabetic controls. Activities of glucokinase, phosphofructokinase and pyruvate kinase in diabetic controls were decreased by 94, 53 and 61 %, respectively, when compared to normal controls; and ZO significantly increased (P<0·05) those enzymes' activities in STZ-diabetic rats. Therefore, the present study showed that ginger is a potential phytomedicine for the treatment of diabetes through its effects on the activities of glycolytic enzymes.
    Matched MeSH terms: Glycogen/metabolism
  3. Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L
    Foods, 2021 Feb 03;10(2).
    PMID: 33546380 DOI: 10.3390/foods10020315
    This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid-liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.
    Matched MeSH terms: Glycogen
  4. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Glycogen Synthase Kinase 3
  5. Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K
    World J Gastroenterol, 2015 Aug 7;21(29):8826-35.
    PMID: 26269672 DOI: 10.3748/wjg.v21.i29.8826
    To investigate the mechanistic action of brewers' rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Glycogen Synthase Kinase 3/genetics; Glycogen Synthase Kinase 3/metabolism
  6. Wee LH, Morad NA, Aan GJ, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2015;16(15):6549-56.
    PMID: 26434873
    The PI3K-Akt-mTOR, Wnt/β-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/β-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin, Gsk3β, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/β catenin signaling pathways and induction of apoptosis pathway.
    Matched MeSH terms: Glycogen Synthase Kinase 3/genetics; Glycogen Synthase Kinase 3 beta
  7. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H
    Drug Des Devel Ther, 2014;8:1765-80.
    PMID: 25336920 DOI: 10.2147/DDDT.S67980
    Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Glycogen Synthase Kinase 3/metabolism*
  8. George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S
    J Ethnopharmacol, 2015 Jun 20;168:158-63.
    PMID: 25858510 DOI: 10.1016/j.jep.2015.03.060
    Melicope lunu-ankenda leaves are used to treat diabetes in folklore medicinal practices in India and Malaysia. Here we report the isolation of an O-prenylated flavonoid (3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enoxy)flavone; OPF) from the leaves of M. lunu-ankenda and its antidiabetes activity against type-2 diabetes mellitus (T2DM).
    Matched MeSH terms: Glycogen/metabolism
  9. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors*
  10. Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N
    Trop Biomed, 2012 Dec;29(4):551-67.
    PMID: 23202600
    The disease melioidosis, caused by the soil bacteria Burkholderia pseudomallei, often manifests as acute septicemia with high fatality. Glycogen synthase kinase-3β (GSK3β) plays a key role during the inflammatory response induced by bacteria. We used a murine model of acute melioidosis to investigate the effects of LiCl, a GSK3 inhibitor on experimental animal survivability as well as TNF-α, IL-1β, IFN-γ, IL-10 and IL-1Ra cytokine levels in blood, lung, liver and spleen of B. pseudomallei-infected mice. Our results showed that administration of 100 μg/g LiCl improved survivability of mice infected with 5 X LD50 of B. pseudomallei. Bacterial counts in spleen, liver and lungs of infected mice administered with LiCl were lower than non-treated controls. Our data also revealed that GSK3β is phosphorylated in the spleen, liver and lung of animals infected with B. pseudomallei. However in infected animals administered with LiCl, higher levels of pGSK3 were detected in the organs. Levels of proinflammatory cytokines (TNF-α, IL-1β and IFN-γ) and anti-inflammatory cytokines (IL-10 and IL-1Ra) in sera and organs tested were elevated significantly following B. pseudomallei infection. With GSK3β inhibition, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) were significantly decreased in all the samples tested whilst the levels of anti-inflammatory cytokines, IL-10 (spleen and lung) and IL-1Ra (spleen, liver and sera) were further elevated. This study represents the first report implicating GSK3β in the modulation of cytokine production during B. pseudomallei infection thus reiterating the important role of GSK3β in the inflammatory response caused by bacterial pathogens.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors*
  11. Chiroma SM, Baharuldin MTH, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, et al.
    Int J Mol Sci, 2019 Apr 16;20(8).
    PMID: 31014012 DOI: 10.3390/ijms20081871
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder more prevalent among the elderly population. AD is characterised clinically by a progressive decline in cognitive functions and pathologically by the presence of neurofibrillary tangles (NFTs), deposition of beta-amyloid (Aβ) plaque and synaptic dysfunction in the brain. Centella asiatica (CA) is a valuable herb being used widely in African, Ayurvedic, and Chinese traditional medicine to reverse cognitive impairment and to enhance cognitive functions. This study aimed to evaluate the effectiveness of CA in preventing d-galactose/aluminium chloride (d-gal/AlCl3) induced AD-like pathologies and the underlying mechanisms of action were further investigated for the first time. Results showed that co-administration of CA to d-gal/AlCl3 induced AD-like rat models significantly increased the levels of protein phosphatase 2 (PP2A) and decreased the levels of glycogen synthase kinase-3 beta (GSK-3β). It was further observed that, CA increased the expression of mRNA of Bcl-2, while there was minimal effect on the expression of caspase 3 mRNA. The results also showed that, CA prevented morphological aberrations in the connus ammonis 3 (CA 3) sub-region of the rat's hippocampus. The results clearly demonstrated for the first time that CA could alleviate d-gal/AlCl3 induced AD-like pathologies in rats via inhibition of hyperphosphorylated tau (P-tau) bio-synthetic proteins, anti-apoptosis and maintenance of cytoarchitecture.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/metabolism
  12. Toe BP, Ramli N, Lam SY, Wong KT, Prepageran N
    Ear Nose Throat J, 2015 Feb;94(2):E27-32.
    PMID: 25651356
    Basaloid squamous cell carcinoma (BSCC) is a rare subtype of squamous cell carcinoma. To date, only 95 cases of sinonasal BSCC have been reported in the English-language literature, and they account for 5% of all cases of head and neck BSCC. We describe what we believe is only the second reported case of a sinonasal tract BSCC that metastasized to the liver. The patient was a 36-year-old woman who presented with right-sided nasal obstruction and a foul-smelling discharge. Clinical examination and imaging identified a large, lobulated, enhancing mass in the right nasal cavity. Following excision of the mass, the patient was scheduled for radiotherapy. However, before it could be administered, follow-up imaging detected a metastasis to the liver and lung, and the patient was switched to chemotherapy. Initially, she responded well clinically, but at 5 months postoperatively, a follow-up CT showed an increasing metastatic presence in the liver and bone. The patient died of her disease 1 year after surgery.
    Matched MeSH terms: Glycogen Storage Disease Type VI
  13. Srikumar PS, Rohini K, Rajesh PK
    Protein J, 2014 Jun;33(3):289-95.
    PMID: 24770803 DOI: 10.1007/s10930-014-9561-2
    Mutations in human laforin lead to an autosomal neurodegenerative disorder Lafora disease. In N-terminal carbohydrate binding domain of laforin, two mutations W32G and K87A are reported as highly disease causing laforin mutants. Experimental studies reported that mutations are responsible for the abolishment of glycogen binding which is a critical function of laforin. Our current computational study focused on the role of conformational changes in human laforin structure due to existing single mutation W32G and prepared double mutation W32G/K87A related to loss of glycogen binding. We performed 10 ns molecular dynamics (MD) simulation studies in the Gromacs package for both mutations and analyzed the trajectories. From the results, the global properties like root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area and hydrogen bonds showed structural changes in atomic level observed in W32G and W32G/K87A laforin mutants. The conformational change induced by mutants influenced the loss of the overall stability of the native laforin. Moreover, the change in overall motion of protein was analyzed by principal component analysis and results showed protein clusters expanded more than native and also change in direction in case of double mutant in conformational space. Overall, our report provides theoretical information on loss of structure-function relationship due to flexible nature of laforin mutants. In conclusion, comparative MD simulation studies support the experimental data on W32G and W32G/K87A related to the lafora disease mechanism on glycogen binding.
    Matched MeSH terms: Glycogen
  14. Chan KH, Lee CH, Sharif SZ, Hayati F, Sallapan S
    Ann Med Surg (Lond), 2020 Dec;60:438-441.
    PMID: 33251002 DOI: 10.1016/j.amsu.2020.11.035
    Background: Metastatic neuroendocrine tumours (NETs) to the breast are very rare entities.

    Case presentation: A 26-year-old lady presented with anterior neck swelling with symptoms of superior vena cava syndrome for 6 months. Imaging study revealed a mediastinal mass which was preceded with core biopsy which was consistent with high-grade small cell NETs. Despite second-line adjuvant chemotherapy and radiotherapy, her disease became advanced which was confirmed via restaging scan. There were bilateral breast lesions discovered during the scan which was deemed to be metastatic NETs histologically. Despite prompt initiation of treatment, she succumbed 1 year after the radiotherapy due to disease progression.

    Conclusion: High suspicion of an index is needed for diagnosis when patients with known primary NETs present with suspicious breast lesions. Triple assessment is mandatory, however histopathology assessment and immunohistochemistry staining are the mainstay of diagnosis.

    Matched MeSH terms: Glycogen Storage Disease Type VI
  15. Wong L, Kanthasamy SV, Durairaj G, Thangaratnam RR
    Int J Surg Case Rep, 2020;77:48-52.
    PMID: 33137672 DOI: 10.1016/j.ijscr.2020.10.091
    INTRODUCTION: Intussusception usually occurs in the paediatric population. When it occurs in the adult population, it is normally caused by a malignant intraluminal pathology.

    PRESENTATION OF CASE: A 72-year-old female presented to us with right-sided abdominal pain for 3 weeks, associated with vomiting and diarrhoea. She had an appendectomy done 30 years ago and a recent myocardial infarction. Abdominal examination revealed a previous appendectomy scar and tenderness over the right lumbar region. Computed tomography showed ileocaecal intussusception. Right hemicolectomy with a double barrel stoma was performed as she was unstable intraoperatively. Histopathological examination of the tumour showed a well-differentiated neuroendocrine tumour. Subsequent PET scan showed no systemic disease and a reversal of the stoma was done. She remained disease free for a year.

    DISCUSSION: Our patient had undergone a right hemicolectomy despite the high risk of mortality, as there is a high chance of malignancy. Double barrel stoma was done, as she was unstable intraoperatively. Fortunately, she recovered well and had her stoma reversed without any further recurrence of her disease.

    CONCLUSION: Adult patients who present with intussusception should be managed with resection, as there is a high possibility of a malignancy. Early resection should be planned to prevent further spread of the tumour.

    Matched MeSH terms: Glycogen Storage Disease Type VI
  16. Aung YN, Nur AM, Ismail A, Aljunid SM
    Clinicoecon Outcomes Res, 2019;11:505-513.
    PMID: 31447570 DOI: 10.2147/CEOR.S209108
    Purpose: Care at ICUs is expensive and variable depending on the type of care that the patients received. Knowing the characteristics of the patient and his or her disease is always useful for improving health services and cost containment.

    Patients and methods: An observational study was conducted at four different intensive care units of an academic medical institution. Demographic characteristics, disease-management casemix information, cost and outcome of the high costing decile, and the rest of the cases were compared.

    Results: A total of 3,220 discharges were included in the study. The high-cost group contributed 35.4% of the ICU stays and 38.8% of the total ICU expenditure. Diseases of the central nervous system had higher odds to be in the top decile of costly patients whereas the cardiovascular system was more likely to be in the non-high cost category. The high-cost patients were more likely to have death as an outcome (19.2% vs 9.3%; p<0.001). The most common conditions that were in the high-cost groups were craniotomy, other ear, nose, mouth, and throat operations, simple respiratory system operations, complex intestinal operations, and septicemia. These five diagnostic groups made up 43% of the high-cost decile.

    Conclusion: High-cost patients utilized almost 40% of the ICU cost although they were only 10% of the ICU patients. The chances of admission to the ICU increased with older age and severity level of the disease. Central nervous system diseases were the major problem of patients aged 46-69 years old. In addition to cost reduction strategies at the treatment level, detailed analysis of these cases was needed to explore and identify pre-event stage prevention strategies.

    Matched MeSH terms: Glycogen Storage Disease Type VI
  17. John CM, Mohamed Yusof NIS, Abdul Aziz SH, Mohd Fauzi F
    Int J Mol Sci, 2018 Dec 05;19(12).
    PMID: 30563117 DOI: 10.3390/ijms19123894
    Gestational diabetes mellitus (GDM) carries many risks, where high blood pressure, preeclampsia and future type II diabetes are widely acknowledged, but less focus has been placed on its effect on cognitive function. Although the multifactorial pathogenesis of maternal cognitive impairment is not completely understood, it shares several features with type 2 diabetes mellitus (T2DM). In this review, we discuss some key pathophysiologies of GDM that may lead to cognitive impairment, specifically hyperglycemia, insulin resistance, oxidative stress, and neuroinflammation. We explain how these incidents: (i) impair the insulin-signaling pathway and/or (ii) lead to cognitive impairment through hyperphosphorylation of τ protein, overexpression of amyloid-β and/or activation of microglia. The aforementioned pathologies impair the insulin-signaling pathway primarily through serine phosphorylation of insulin receptor substances (IRS). This then leads to the inactivation of the phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling cascade, which is responsible for maintaining brain homeostasis and normal cognitive functioning. PI3K/AKT is crucial in maintaining normal cognitive function through the inactivation of glycogen synthase kinase 3β (GSκ3β), which hyperphosphorylates τ protein and releases pro-inflammatory cytokines that are neurotoxic. Several biomarkers were also highlighted as potential biomarkers of GDM-related cognitive impairment such as AGEs, serine-phosphorylated IRS-1 and inflammatory markers such as tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), leptin, interleukin 1β (IL-1β), and IL-6. Although GDM is a transient disease, its complications may be long-term, and hence increased mechanistic knowledge of the molecular changes contributing to cognitive impairment may provide important clues for interventional strategies.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta
  18. Abubakar AA, Zulkifli I, Goh YM, Kaka U, Sabow AB, Imlan JC, et al.
    Foods, 2021 Jan 26;10(2).
    PMID: 33530479 DOI: 10.3390/foods10020252
    This study's objective was to evaluate the effects of distance and stocking density on physicochemical properties and oxidative stability of meat and acute-phase proteins in Brahman crossbred cattle transported by road under hot and humid tropical conditions. Sixty Brahman crossbred heifers were subjected to road transport from a cattle feedlot farm located in Universiti Putra Malaysia (UPM), Serdang, to a commercial ruminant abattoir in Shah Alam, Selangor. Animals were assigned to long and short distances and high, medium, and low stocking densities. The results revealed that the intensity of response significantly increased in meat samples from animals subjected to long-distance transportation and higher stocking density. Alpha-1-acid glycoprotein and serum amyloid-A values increased considerably and were different from the baseline values recorded at preload. In conclusion, the current results revealed that the color, pH, shear force values, water holding capacity (WHC), glycogen level, and malondilaldehyde assay (MDA) concentrations in meat and acute-phase proteins (APP) were affected by both distances and stocking densities, as evidenced by the significant changes recorded from the parameters above.
    Matched MeSH terms: Glycogen
  19. Cao W, Chen X, Chin Y, Zheng J, Lim PE, Xue C, et al.
    J Food Biochem, 2021 Apr 04.
    PMID: 33817806 DOI: 10.1111/jfbc.13686
    Natural compounds have tremendous potential to regulate glucose metabolism, but conventional methods for studying their bioactivities are usually labor intensive. Here, hypoglycemic properties in 22 selected food-derived compounds were examined using molecular docking. The results indicated that curcumin is an inhibitor of both α-glucosidase and dipeptidyl-peptidase 4 (DPP-4), which are important for glycemic control. These effects of curcumin were also confirmed by enzymatic determination in vitro. Furthermore, curcumin significantly improved diet-induced hyperglycemia (e.g., fasting plasma glucose levels and glycogen storage in muscle or liver) in mice. This might be attributed to its inhibitory effects on the activities of α-glucosidase and DPP-4 in vivo. Curcumin also upregulated the expression of genes (e.g., glucagon-like peptide 1) related to DPP-4 activity in the small intestine. In conclusion, curcumin is a potential ingredient of functional foods used for diet-induced hyperglycemia management. PRACTICAL APPLICATIONS: Curcumin has been widely used as a colorant in the food industry. Moreover, a growing number of studies have described its diverse biological functions, such as anti-inflammatory, anti-oxidant, and anti-angiogenic activities. Thus, curcumin is regarded as a potential ingredient in functional foods. Our results highlighted the hyperglycemic effect of curcumin, suggesting that curcumin may be included in food products for hyperglycemic patients.
    Matched MeSH terms: Glycogen
  20. Nurul Farhana Ramlan, Noraini Abu Bakar, Albert, Emmellie Laura, Syaizwan Zahmir Zulkifli, Syahida Ahmad, Mohammad Noor Amal Azmai, et al.
    MyJurnal
    An ideal model organism for neurotoxicology research should meet several characteristics, such as low cost and amenable for high throughput testing. Javanese medaka (JM) has been widely used in the ecotoxicological studies related to the marine and freshwater environment, but rarely utilized for biomedical research. Therefore, in this study, the applicability of using JM in the neurotoxicology research was assessed using biochemical comparison with an established model organism, the zebrafish. Identification of biochemical changes due to the neurotoxic effects of ethanol and endosulfan was assessed using Fourier Transform Infrared (FTIR) analysis. Treatment with ethanol affected the level of lipids, proteins, glycogens and nucleic acids in the brain of JM. Meanwhile, treatment with endosulfan showed alteration in the level of lipids and nucleic acids. For the zebrafish, exposure to ethanol affected the level of protein, fatty acid and amino acid, and exposure to endosulfan induced alteration in the fatty acids, amino acids, nucleic acids and protein in the brain of zebrafish. The sensitive response of the JM toward chemicals exposure proved that it was a valuable model for neurotoxicology research. More studies need to be conducted to further develop JM as an ideal model organism for neurotoxicology research.
    Matched MeSH terms: Glycogen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links