Displaying publications 1 - 20 of 133 in total

Abstract:
Sort:
  1. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Foo KL, Balakrishnan SR, et al.
    Sci Rep, 2015 Jul 16;5:12231.
    PMID: 26178973 DOI: 10.1038/srep12231
    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
    Matched MeSH terms: Gold/chemistry*
  2. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P
    Mikrochim Acta, 2019 07 18;186(8):546.
    PMID: 31321546 DOI: 10.1007/s00604-019-3696-y
    A genomic DNA-based colorimetric assay is described for the detection of the early growth factor receptor (EGFR) mutation, which is the protruding reason for non-small cell lung cancer. A DNA sequence was designed and immobilized on unmodified gold nanoparticles (GNPs). The formation of the respective duplex indicates the presence of an EGFR mutation. It is accompanied by the aggregation of the GNPs in the presence of monovalent ions, and it indicates the presence of an EGFR mutation. This is accompanied by a color change from red (520 nm) to purple (620 nm). Aggregation was evidenced by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The limit of detection is 313 nM of the mutant target strand. A similar peak shift was observed for 2.5 μM concentrations of wild type target. No significant peak shift was observed with probe and non-complementary DNA. Graphical abstract Schematic representation of high-specific genomic DNA sequence on gold nanoparticle (GNP) aggregation with sodium chloride (NaCl). It illustrates the detection method for EGFR mutation on lung cancer detection. Red and purple colors of tubes represent dispersed and aggregated GNP, respectively.
    Matched MeSH terms: Gold/chemistry*
  3. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
    Matched MeSH terms: Gold/chemistry*
  4. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Gold/chemistry
  5. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: Gold/chemistry
  6. Azizah N, Hashim U, Gopinath SCB, Nadzirah S
    Int J Biol Macromol, 2017 Jan;94(Pt A):571-575.
    PMID: 27771413 DOI: 10.1016/j.ijbiomac.2016.10.060
    Nanoparticles have been investigated as flagging tests for the sensitive DNA recognition that can be utilized as a part of field applications to defeat restrictions. Gold nanoparticles (AuNPs) have been widely utilized due to its optical property and capacity to get functionalized with a mixed bag of biomolecules. This study exhibits the utilization of AuNPs functionalized with single-stranded oligonucleotide (AuNP-oligo test) for fast the identification of Human Papillomavirus (HPV). This test is displayed on interdigitated electrode sensor and supported by colorimetric assay. DNA conjugated AuNP has optical property that can be controlled for the applications in diagnostics. With its identification abilities, this methodology incorporates minimal effort, strong reagents and basic identification of HPV.
    Matched MeSH terms: Gold/chemistry*
  7. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Gold/chemistry
  8. Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, et al.
    Lab Chip, 2023 Mar 14;23(6):1622-1636.
    PMID: 36786757 DOI: 10.1039/d2lc01159j
    The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
    Matched MeSH terms: Gold/chemistry
  9. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ
    Int J Nanomedicine, 2019;14:1633-1657.
    PMID: 30880970 DOI: 10.2147/IJN.S184723
    Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
    Matched MeSH terms: Gold/chemistry*
  10. Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, et al.
    Mikrochim Acta, 2020 01 15;187(2):131.
    PMID: 31940088 DOI: 10.1007/s00604-019-3893-8
    This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
    Matched MeSH terms: Gold/chemistry
  11. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Gold/chemistry
  12. Taheri A, Khandaker MU, Moradi F, Bradley DA
    Phys Med Biol, 2024 Feb 15;69(4).
    PMID: 38286017 DOI: 10.1088/1361-6560/ad2380
    Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
    Matched MeSH terms: Gold/chemistry
  13. Rahim MZA, Govender-Hondros G, Adeloju SB
    Talanta, 2018 Nov 01;189:418-428.
    PMID: 30086941 DOI: 10.1016/j.talanta.2018.06.041
    The development of free and total cholesterol nanobiosensors based on a single step electrochemical integration of gold nanoparticles (AuNPs), cholesterol oxidase (COx), cholesterol esterase (CE) and a mediator with polypyrrole (PPy) films is described. The incorporation of the various components in the PPy films was confirmed by chronopotentiometry, cyclic voltammetry (CV), scanning electron microscopy, energy dispersive X-ray analysis (SEM-EDX), and Fourier transformed infrared (FTIR) spectroscopy. The free cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx, nanobiosensor achieved a minimum detectable concentration of 5 μM, a linear concentration range of 5-25 μM and a sensitivity of 1.6 µA cm-2 µM-1 in 0.05 M phosphate buffer (pH 7.00). For the total cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx-CE, nanobiosensor which also involved the co-incorporation of cholesterol esterase (CE) with the other components, the achieved performances include a minimum detectable total cholesterol concentration of 25 μM, a broader linear concentration range of 25-170 μM and a lower sensitivity of 0.1 µA µM-1 cm-2. Owing to its high selectivity, the presence of common interferants did not affect the total cholesterol measurement with the PPy-NO3--Fe(CN)64--AuNPs-COx-CE nanobiosensor. Both nanobiosensors were successfully used for direct and indirect determination of total cholesterol in human blood serum samples.
    Matched MeSH terms: Gold/chemistry*
  14. Yang H, Zhang Z, Zhou X, Binbr Abe Menen N, Rouhi O
    Environ Res, 2023 Dec 01;238(Pt 1):117163.
    PMID: 37722583 DOI: 10.1016/j.envres.2023.117163
    The current study has focused on electrochemical immunosensing of carcinoembryonic antigen (CEA) employing an immobilized antibody on a thionine, chitosan, or graphene oxide nanocomposite modified glassy carbon electrode (anti-CEA/THi-CS-GO/GCE) as an indicator of cancer monitoring. THi-CS-GO nanocomposites were made using ultrasonication, and analyses of their morphology and crystal structure using SEM, FTIR, and XRD showed that thionine and chitosan molecules were intercalated with stacking interactions with both the top and bottom of GO nanosheets. Electrochemical experiments revealed anti-CEA, THi-CS-GO/GCE to have exceptional sensitivity and selectivity towards CEA compounds. The detection limit value was established to be 0.8 pg/mL when it was discovered that variations in the decrease peak current were directly proportional to the logarithm concentration of CEA over a wide range from 10-3 to 104 ng/mL. Results of testing the immunosensor's application capability for detecting CEA in a sample of human serum show that ELISA and DPV results are very congruent. The produced immunosensor demonstrated adequate immunosensor precision in determining CEA in prepared genuine samples of human serum and clinical applications.
    Matched MeSH terms: Gold/chemistry
  15. Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, et al.
    Int J Nanomedicine, 2021;16:2311-2322.
    PMID: 33776435 DOI: 10.2147/IJN.S302396
    Background: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD.

    Materials and Methods: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized.

    Results: This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ.

    Conclusion: Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.

    Matched MeSH terms: Gold/chemistry*
  16. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Gold/chemistry
  17. Md Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, et al.
    Sensors (Basel), 2019 Nov 22;19(23).
    PMID: 31766637 DOI: 10.3390/s19235111
    A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.
    Matched MeSH terms: Gold/chemistry
  18. Futra D, Tan LL, Lee SY, Lertanantawong B, Heng LY
    Biosensors (Basel), 2023 Jun 04;13(6).
    PMID: 37366981 DOI: 10.3390/bios13060616
    In view of the presence of pathogenic Vibrio cholerae (V. cholerae) bacteria in environmental waters, including drinking water, which may pose a potential health risk to humans, an ultrasensitive electrochemical DNA biosensor for rapid detection of V. cholerae DNA in the environmental sample was developed. Silica nanospheres were functionalized with 3-aminopropyltriethoxysilane (APTS) for effective immobilization of the capture probe, and gold nanoparticles were used for acceleration of electron transfer to the electrode surface. The aminated capture probe was immobilized onto the Si-Au nanocomposite-modified carbon screen printed electrode (Si-Au-SPE) via an imine covalent bond with glutaraldehyde (GA), which served as the bifunctional cross-linking agent. The targeted DNA sequence of V. cholerae was monitored via a sandwich DNA hybridization strategy with a pair of DNA probes, which included the capture probe and reporter probe that flanked the complementary DNA (cDNA), and evaluated by differential pulse voltammetry (DPV) in the presence of an anthraquninone redox label. Under optimum sandwich hybridization conditions, the voltammetric genosensor could detect the targeted V. cholerae gene from 1.0 × 10-17-1.0 × 10-7 M cDNA with a limit of detection (LOD) of 1.25 × 10-18 M (i.e., 1.1513 × 10-13 µg/µL) and long-term stability of the DNA biosensor up to 55 days. The electrochemical DNA biosensor was capable of giving a reproducible DPV signal with a relative standard deviation (RSD) of <5.0% (n = 5). Satisfactory recoveries of V. cholerae cDNA concentration from different bacterial strains, river water, and cabbage samples were obtained between 96.5% and 101.6% with the proposed DNA sandwich biosensing procedure. The V. cholerae DNA concentrations determined by the sandwich-type electrochemical genosensor in the environmental samples were correlated to the number of bacterial colonies obtained from standard microbiological procedures (bacterial colony count reference method).
    Matched MeSH terms: Gold/chemistry
  19. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
    Matched MeSH terms: Gold/chemistry
  20. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Gold/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links