Displaying publications 1 - 20 of 153 in total

Abstract:
Sort:
  1. Basri DF, Tan LS, Shafiei Z, Zin NM
    PMID: 22203875 DOI: 10.1155/2012/632796
    The galls of Quercus infectoria are commonly used in Malay traditional medicine to treat wound infections after childbirth. In India, they are employed traditionally as dental applications such as that in treatment of toothache and gingivitis. The aim of the present study was to evaluate the antibacterial activity of galls of Quercus infectoria Olivier against oral bacteria which are known to cause dental caries and periodontitis. Methanol and acetone extracts were screened against two Gram-positive bacteria (Streptococcus mutans ATCC 25175 and Streptococcus salivarius ATCC 13419) and two Gram-negative bacteria (Porphyromonas gingivalis ATCC 33277 and Fusobacterium nucleatum ATCC 25586). The screening test of antibacterial activity was performed using agar-well diffusion method. Subsequently, minimum inhibitory concentration (MIC) was determined by using twofold serial microdilution method at a concentration ranging between 0.01 mg/mL and 5 mg/mL. Minimum bactericidal concentration (MBC) was obtained by subculturing microtiter wells which showed no changes in colour of the indicator after incubation. Both extracts showed inhibition zones which did not differ significantly (P < 0.05) against each tested bacteria. Among all tested bacteria, S. salivarius was the most susceptible. The MIC ranges for methanol and acetone extracts were the same, between 0.16 and 0.63 mg/mL. The MBC value, for methanol and acetone extracts, was in the ranges 0.31-1.25 mg/mL and 0.31-2.50 mg/mL, respectively. Both extracts of Q. infectoria galls exhibited similar antibacterial activity against oral pathogens. Thus, the galls may be considered as effective phytotherapeutic agents for the prevention of oral pathogens.
    Matched MeSH terms: Gram-Negative Bacteria
  2. Nie J, Aweya JJ, Yu Z, Zhou H, Wang F, Yao D, et al.
    J Immunol, 2022 Aug 01;209(3):476-487.
    PMID: 35851542 DOI: 10.4049/jimmunol.2200078
    Although invertebrates' innate immunity relies on several immune-like molecules, the diversity of these molecules and their immune response mechanisms are not well understood. Here, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes specific deacetylation under Vibrio parahaemolyticus and LPS challenge. In vitro deacetylation of PvHMC increases its binding capacity with LPS and antibacterial activity against Gram-negative bacteria. Lysine residues K481 and K484 on the Ig-like domain of PvHMC are the main acetylation sites modulated by the acetyltransferase TIP60 and deacetylase HDAC3. Deacetylation of PvHMC on K481 and K484 allows PvHMC to form a positively charged binding pocket that interacts directly with LPS, whereas acetylation abrogates the positive charge to decrease PvHMC-LPS attraction. Besides, V. parahaemolyticus and LPS challenge increases the expression of Pvhdac3 to induce PvHMC deacetylation. This work indicates that, during bacterial infections, deacetylation of hemocyanin is crucial for binding with LPS to clear Gram-negative bacteria in crustaceans.
    Matched MeSH terms: Gram-Negative Bacteria
  3. Gorajana A, Venkatesan M, Vinjamuri S, Kurada BV, Peela S, Jangam P, et al.
    Microbiol Res, 2007;162(4):322-7.
    PMID: 16580188
    In our systematic screening programme for marine actinomycetes, a bioactive Streptomycete was isolated from marine sediment samples of Bay of Bengal, India. The taxonomic studies indicated that the isolate belongs to Streptomyces chibaensis and it was designated as S. chibaensis AUBN1/7. The isolate yielded a cytotoxic compound. It was obtained by solvent extraction followed by the chromatographic purification. Based on the spectral data of the pure compound, it was identified as quinone-related antibiotic, resistoflavine (1). It showed a potent cytotoxic activity against cell lines viz. HMO2 (Gastric adenocarcinoma) and HePG2 (Hepatic carcinoma) in vitro and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  4. Goh TC, Bajuri MY, C Nadarajah S, Abdul Rashid AH, Baharuddin S, Zamri KS
    J Foot Ankle Res, 2020 Jun 16;13(1):36.
    PMID: 32546270 DOI: 10.1186/s13047-020-00406-y
    BACKGROUND: Diabetic foot infection is a worldwide health problem is commonly encountered in daily practice. This study was conducted to identify the microbiological profile and antibiotic sensitivity patterns of causative agents identified from diabetic foot infections (DFIs). In addition, the assessment included probable risk factors contributing to infection of ulcers that harbour multidrug-resistant organisms (MDROs) and their outcomes.

    METHODS: We carried out a prospective analysis based on the DFI samples collected from 2016 till 2018. Specimens were cultured with optimal techniques in addition to antibiotic susceptibility based on recommendations from The Clinical and Laboratory Standards Institute (CLSI). A total of 1040 pathogens were isolated with an average of 1.9 pathogens per lesion in 550 patients who were identified with having DFIs during this interval.

    RESULTS: A higher percentage of Gram-negative pathogens (54%) were identified as compared with Gram-positive pathogens (33%) or anaerobes (12%). A total of 85% of the patients were found to have polymicrobial infections. Pseudomonas aeruginosa (19%), Staphylococcus aureus (11%) and Bacteroides species (8%) appeared to be the predominant organisms isolated. In the management of Gram-positive bacteria, the most efficacious treatment was seen with the use of Vancomycin, while Imipenem and Amikacin proved to be effective in the treatment of Gram-negative bacteria.

    CONCLUSION: DFI's are common among Malaysians with diabetes, with a majority of cases displaying polymicrobial aetiology with multi-drug resistant isolates. The data obtained from this study will be valuable in aiding future empirical treatment guidelines in the treatment of DFIs. This study investigated the microbiology of DFIs and their resistance to antibiotics in patients with DFIs that were managed at a Tertiary Care Centre in Malaysia.

    Matched MeSH terms: Gram-Negative Bacteria/classification*; Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/isolation & purification
  5. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I
    Trop Biomed, 2005 Dec;22(2):165-70.
    PMID: 16883283 MyJurnal
    Medicinal plants have many traditional claims including the treatment of ailments of infectious origin. In the evaluation of traditional claims, scientific research is important. The objective of the study was to determine the presence of antibacterial activity in the crude extracts of some of the commonly used medicinal plants in Malaysia, Andrographis paniculata, Vitex negundo, Morinda citrifolia, Piper sarmentosum, and Centella asiatica. In this preliminary investigation, the leaves were used and the crude extracts were subjected to screening against five strains of bacteria species, Methicillin Resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, using standard protocol of Disc Diffusion Method (DDM). The antibacterial activities were assessed by the presence or absence of inhibition zones and MIC values. M. citrifolia, P. sarmentosum and C. asiatica methanol extract and A. paniculata (water extract) have potential antibacterial activities to both gram positive S. aureus and Methicillin Resistant S. aureus (MRSA). None of the five plant extracts tested showed antibacterial activities to gram negative E. coli and K. pneumoniae, except for A. paniculata and P. sarmentosum which showed activity towards P. aeruginosa. A. paniculata being the most potent at MIC of 2 g/disc. This finding forms a basis for further studies on screening of local medicinal plant extracts for antibacteria properties.
    Matched MeSH terms: Gram-Negative Bacteria/classification; Gram-Negative Bacteria/drug effects*
  6. Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin AS
    Eur J Med Chem, 2011 Sep;46(9):3788-94.
    PMID: 21712145 DOI: 10.1016/j.ejmech.2011.05.044
    Two novel series of hydrazinyl thiazolyl coumarin derivatives have been synthesized and fully characterized by IR, (1)H NMR, (13)C NMR, elemental analysis and mass spectral data. The structures of some compounds were further confirmed by X-ray crystallography. All of these derivatives, 10a-d and 15a-h, were screened in vitro for antimicrobial activity against various bacteria species including Mycobacterium tuberculosis and Candida albicans. The compounds 10c, 10d and 15e exhibited very good activities against all of the tested microbial strains.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  7. Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MI
    J Ethnopharmacol, 2013 Mar 7;146(1):198-204.
    PMID: 23276785 DOI: 10.1016/j.jep.2012.12.032
    Muntingia calabura (Elaeocarpaceae) is one of the most common roadside trees in Malaysia. Its leaves, barks, flowers and roots have been used as a folk remedy for the treatment of fever, incipient cold, liver disease, as well as an antiseptic agent in Southeast Asia. The aim of this study is to isolate and identify the antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  8. Yusof MI, Yusof AH
    Med J Malaysia, 2004 Dec;59(5):574-7.
    PMID: 15889557
    Staphylococcus aureus infection remains the commonest organism causing musculoskeletal infection and antibiotic is the mainstay of treatment apart from adequate and appropriate surgical intervention. The exact figure of antibiotic resistance in orthopaedic practice is not known but it is expected to be higher than previously reported as the use of antibiotics is rampant. Its sensitivity to various antibiotics differs from one center to another making local surveillance necessary. From 66 patients with musculoskeletal infections studied in our centre, Staphylococcus aureus was cultured in 50-65% of patients, depending on the sample taken. Fifteen percent of this were methicillin resistant Staphylococcus aureus (MRSA). Staphylococcus aureus was found to be sensitive to cloxacillin in 95% of patients' sample. MRSA remained highly sensitive to vancomycin, clindamycin and fucidic acid.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Negative Bacteria/isolation & purification
  9. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  10. Perveen S, Safdar N, Chaudhry GE, Yasmin A
    World J Microbiol Biotechnol, 2018 Jul 14;34(8):118.
    PMID: 30008019 DOI: 10.1007/s11274-018-2500-1
    This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  11. Rahman ZA, Harun A, Hasan H, Mohamed Z, Noor SS, Deris ZZ, et al.
    Eye Contact Lens, 2013 Sep;39(5):355-60.
    PMID: 23982472 DOI: 10.1097/ICL.0b013e3182a3026b
    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Negative Bacteria/isolation & purification
  12. Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, et al.
    Exp Parasitol, 2018 Nov;194:67-78.
    PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020
    Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  13. Hong W, Li J, Chang Z, Tan X, Yang H, Ouyang Y, et al.
    J Antibiot (Tokyo), 2017 Jul;70(7):832-844.
    PMID: 28465626 DOI: 10.1038/ja.2017.55
    The emergence of drug resistance in bacterial pathogens is a growing clinical problem that poses difficult challenges in patient management. To exacerbate this problem, there is currently a serious lack of antibacterial agents that are designed to target extremely drug-resistant bacterial strains. Here we describe the design, synthesis and antibacterial testing of a series of 40 novel indole core derivatives, which are predicated by molecular modeling to be potential glycosyltransferase inhibitors. Twenty of these derivatives were found to show in vitro inhibition of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Four of these strains showed additional activity against Gram-negative bacteria, including extended-spectrum beta-lactamase producing Enterobacteriaceae, imipenem-resistant Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumanii, and against Mycobacterium tuberculosis H37Ra. These four compounds are candidates for developing into broad-spectrum anti-infective agents.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  14. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al.
    J Antibiot (Tokyo), 2014 Feb;67(2):147-51.
    PMID: 24169795 DOI: 10.1038/ja.2013.111
    Polymyxin B and colistin were examined for their ability to inhibit the type II NADH-quinone oxidoreductases (NDH-2) of three species of Gram-negative bacteria. Polymyxin B and colistin inhibited the NDH-2 activity in preparations from all of the isolates in a concentration-dependent manner. The mechanism of NDH-2 inhibition by polymyxin B was investigated in detail with Escherichia coli inner membrane preparations and conformed to a mixed inhibition model with respect to ubiquinone-1 and a non-competitive inhibition model with respect to NADH. These suggest that the inhibition of vital respiratory enzymes in the bacterial inner membrane represents one of the secondary modes of action for polymyxins.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Negative Bacteria/enzymology*
  15. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development
  16. Khosravi Y, Rehvathy V, Wee WY, Wang S, Baybayan P, Singh S, et al.
    Gut Pathog, 2013;5:25.
    PMID: 23957912 DOI: 10.1186/1757-4749-5-25
    Helicobacter pylori is a Gram-negative bacterium that persistently infects the human stomach inducing chronic inflammation. The exact mechanisms of pathogenesis are still not completely understood. Although not a natural host for H. pylori, mouse infection models play an important role in establishing the immunology and pathogenicity of H. pylori. In this study, for the first time, the genome sequences of clinical H. pylori strain UM032 and mice-adapted derivatives, 298 and 299, were sequenced using the PacBio Single Molecule, Real-Time (SMRT) technology.
    Matched MeSH terms: Gram-Negative Bacteria
  17. Yap PS, Ahmad Kamar A, Chong CW, Yap IK, Thong KL, Choo YM, et al.
    Pathog Glob Health, 2016 Sep;110(6):238-246.
    PMID: 27650884
    The prevalence and antibiotic susceptibility of intestinal carriage of Gram-negative bacteria among preterm infants admitted to the neonatal intensive care unit (NICU) in a tertiary teaching hospital in Malaysia were determined. A total of 34 stool specimens were obtained from preterm infants upon admission and once weekly up to two weeks during hospitalization. The presumptive colonies of Escherichia coli and Klebsiella pneumoniae were selected for identification, antibiotic susceptibility testing, and subtyping by using pulsed-field gel electrophoresis (PFGE). Out of 76 Gram-negative isolates, highest resistance was detected for amoxicillin/clavulanate (30.8%, n = 16), ceftriaxone (42.3%, n = 22), ceftazidime (28.8%, n = 15), cefoxitin (28.8%, n = 15), aztreonam (36.5%, n = 19), and polymyxin B (23.1%, n = 12). Three colistin resistant K. pneumoniae have also been detected based on E-test analysis. Thirty-nine isolates of K. pneumoniae and 20 isolates of E. coli were resistant to more than three antimicrobial classes and were categorized as multidrug resistant (MDR). PFGE analysis revealed a higher diversity in pulsotypes for K. pneumoniae (18 pulsotypes) in comparison to E. coli (four pulsotypes). In addition, a total of fifteen pulsotypes was observed from 39 MDR K. pneumoniae. The risk factors for antibiotic resistance were assessed using random forest analysis. Gender was found to be the most important predictor for colistin resistant while length, OFC, and delivery mode were showing greater predictive power in the polymyxin B resistance. This study revealed worrying prevalence rates of intestinal carriage of multidrug-resistant K. pneumoniae and E. coli of hospitalized preterm infants in Malaysia, particularly high resistance to polymyxins.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/isolation & purification*
  18. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  19. Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, et al.
    Molecules, 2014;19(8):11722-40.
    PMID: 25102118 DOI: 10.3390/molecules190811722
    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  20. Yenn TW, Arslan Khan M, Amiera Syuhada N, Chean Ring L, Ibrahim D, Tan WN
    Steroids, 2017 Dec;128:68-71.
    PMID: 29104098 DOI: 10.1016/j.steroids.2017.10.016
    The emergence of beta lactamase producing bacterial strains eliminated the use of beta lactam antibiotics as chemotherapeutic alternative. Beta lactam antibiotics can be coupled with non-antibiotic adjuvants to combat these multidrug resistant strains. We study the synergistic antibiotic effect of stigmasterol as adjuvant of ampicillin against clinical isolates. Ampicillin was used in this study as a beta lactam antibiotic model. All test bacteria were beta lactamase producing clinical isolates. The combination showed significantly better antibiotic activity on all bacteria tested. The two test substances have synergistic antibiotic activity, and the effect was observed in both Gram positive and Gram negative bacteria. The synergistic antibiotic effect of stigmasterol and ampicillin was evident by the low fractional inhibitory concentration (FIC) index on Checkerboard Assay. The results suggest that the combination of ampicillin and stigmasterol acts additively in the treatment of infections caused by beta-lactamase producing pathogens. In bacterial growth reduction assay, ampicillin and stigmasterol alone exhibited very weak inhibitory effect on the bacterial growth, relative to ethanol control. Comparatively, combination of stigmasterol-ampicillin greatly reduced the colony counts at least by 98.7%. In conclusion, we found synergistic effects of stigmasterol and ampicillin against beta lactamase producing clinical isolates. This finding is important as it shows potential application of stigmasterol as an antibiotic adjuvant.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links