Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Ramachandran H, Iqbal MA, Amirul AA
    Appl Biochem Biotechnol, 2014 Sep;174(2):461-70.
    PMID: 25099372 DOI: 10.1007/s12010-014-1080-2
    Microbial pigments are gaining intensive attention due to increasing awareness of the toxicity of synthetic colours. In this study, a novel polymer-producing bacterium designated as Cupriavidus sp. USMAHM13 was also found to produce yellow pigment when cultivated in nutrient broth. Various parameters such as temperature, pH and ratio of culture volume to flask volume were found to influence the yellow pigment production. UV-Visible, Fourier transform infrared and (13)C-nuclear magnetic resonance analyses revealed that the crude yellow pigment might probably represent new bioactive compound in the carotenoid family. The crude yellow pigment also exhibited a wide spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria with their inhibition zones and minimal inhibitory concentrations ranged from 25 to 38 mm and from 0.63 to 2.5 mg/ml, respectively. To the best of our knowledge, this is the first report on the identification and characterization of yellow pigment produced by bacterium belonging to the genus Cupriavidus.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  2. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR
    Asian Pac J Trop Biomed, 2013 Aug;3(8):604-10; discussion 609-10.
    PMID: 23905016 DOI: 10.1016/S2221-1691(13)60123-9
    To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  3. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  4. Latha LY, Darah I, Jain K, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Feb;2(2):149-51.
    PMID: 23569886 DOI: 10.1016/S2221-1691(11)60210-4
    OBJECTIVE: To investigate the antimicrobial activity of methanolic extracts of different parts of Ixora species.

    METHODS: Antimicrobial activity was carried out using disc diffusion assay against fungi, gram-positive and gram-negative bacteria.

    RESULTS: All methanolic extracts of different parts of Ixora species showed a broad-spectrum of antibacterial and antiyeast activities, which inhibited the growth of at least one bacterium or yeast. There was no remarkable difference between different Ixora species observed in this study.

    CONCLUSIONS: The significant antimicrobial activity shown by this Ixora species suggests its potential against infections caused by pathogens. The extract may be developed as an antimicrobial agent.

    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  5. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, et al.
    BMC Microbiol, 2017 May 23;17(1):121.
    PMID: 28535747 DOI: 10.1186/s12866-017-1000-z
    BACKGROUND: Selection of a microbial strain for the incorporation into food products requires in vitro and in vivo evaluations. A bacteriocin-producing lactic acid bacterium (LAB), Pediococcus acidilactici Kp10, isolated from a traditional dried curd was assessed in vitro for its beneficial properties as a potential probiotic and starter culture. The inhibitory spectra of the bacterial strain against different gram-positive and gram-negative bacteria, its cell surface hydrophobicity and resistance to phenol, its haemolytic, amylolytic and proteolytic activities, ability to produce acid and coagulate milk together with its enzymatic characteristics and adhesion property were all evaluated in vitro.

    RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.

    CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.

    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  6. Narender M, Jaswanth S B, Umasankar K, Malathi J, Raghuram Reddy A, Umadevi KR, et al.
    Bioorg Med Chem Lett, 2016 Feb 01;26(3):836-840.
    PMID: 26755393 DOI: 10.1016/j.bmcl.2015.12.083
    Development of multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) has been considered as major health burden, globally. In order to develop novel, potential molecules against drug resistant TB, twenty two (22) new 3-substituted-7-benzyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (6a-k) and 3-substituted-7-benzyl-2-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (7a-k) derivatives were designed and synthesized by using appropriate synthetic protocols. Pantothenate synthetase (PS) was considered as the target for the molecular docking studies and evaluated the binding pattern at active site, as PS plays a significant role in the biosynthesis of pantothenate in Mycobacterium tuberculosis (MTB). The preliminary in vitro antibacterial screening of test compounds was carried out against two strains of Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antimycobacterial screening was performed against MTB H37Rv and an isoniazid-resistant clinical isolate of MTB. The compounds 6b, 6c, 6d, 6k, 7b, 7c, 7d and 7k exhibited promising antibacterial activity MIC in the range of 15-73 μM against all bacterial strains used and compounds 6d and 7b showed antimycobacterial activity (IC50 <340 μM in LRP assay) and (MIC <9 μM in broth microdilution method).
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  7. Sirajuddin SA, Sundram S
    Braz J Microbiol, 2020 Sep;51(3):919-929.
    PMID: 32078730 DOI: 10.1007/s42770-020-00241-0
    Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  8. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  9. Shapi'i RA, Othman SH, Nordin N, Kadir Basha R, Nazli Naim M
    Carbohydr Polym, 2020 Feb 15;230:115602.
    PMID: 31887886 DOI: 10.1016/j.carbpol.2019.115602
    Chitosan nanoparticles (CNP) were synthesized via ionic gelation and used for the preparation of starch-based nanocomposite films containing different concentration of CNP (0, 5, 10, 15, 20% w/w). Antimicrobial properties of starch/CNP films was evaluated via in vitro (disc diffusion analysis) and in vivo (microbial count in wrapped cherry tomatoes) study. It was found that inhibitory zone of the 15 and 20% of starch/CNP films were clearly observed for all the tested bacteria including Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. In vivo study revealed that the starch/CNP film (15% w/w) was more efficient to inhibit the microbial growth in cherry tomatoes (7 × 102 CFU/g) compared to neat starch film (2.15 × 103 CFU/g) thus confirmed the potential application of the films as antimicrobial food packaging.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  10. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  11. Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al.
    Colloids Surf B Biointerfaces, 2019 Sep 01;181:6-15.
    PMID: 31103799 DOI: 10.1016/j.colsurfb.2019.05.023
    The antibacterial nature of graphene oxide (GO) has stimulated wide interest in the medical field. Although the antibacterial activity of GO towards bacteria has been well studied, a deeper understanding of the mechanism of action of GO is still lacking. The objective of the study was to elucidate the difference in the interactions of GO towards Gram-positive and Gram-negative bacteria. The synthesized GO was characterized by Ultraviolet-visible spectroscopy (UV-vis), Raman and Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). Viability, time-kill and Lactose Dehydrogenase (LDH) release assays were carried out along with FESEM, TEM and ATR-FTIR analysis of GO treated bacterial cells. Characterizations of synthesized GO confirmed the transition of graphene to GO and the antibacterial activity of GO was concentration and time-dependent. Loss of membrane integrity in bacteria was enhanced with increasing GO concentrations and this corresponded to the elevated release of LDH in the reaction medium. Surface morphology of GO treated bacterial culture showed apparent differences in the mechanism of action of GO towards Gram-positive and Gram-negative bacteria where cell entrapment was mainly observed for Gram-positive Staphylococcus aureus and Enterococcus faecalis whereas membrane disruption due to physical contact was noted for Gram-negative Escherichia coli and Pseudomonas aeruginosa. ATR-FTIR characterizations of the GO treated bacterial cells showed changes in the fatty acids, amide I and amide II of proteins, peptides and amino acid regions compared to untreated bacterial cells. Therefore, the data generated further enhance our understanding of the antibacterial activity of GO towards bacteria.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  12. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  13. Chigurupati S, Vijayabalan S, Selvarajan KK, Aldubayan M, Alhowail A, Mani V, et al.
    Curr Pharm Biotechnol, 2020;21(5):384-389.
    PMID: 31657678 DOI: 10.2174/1389201020666191028105325
    BACKGROUND: Endophytic bacteria produce various bioactive secondary metabolites, which benefit human health. Tamarindus indica L. is well known for its medicinal value in human health care. Several studies have reported on its biological effects from various parts of T. indica, but only a few studies have been devoted to examining the biological activity of endophytes of T. indica.

    OBJECTIVES: In the present study, an endophyte was isolated from the leaves of T. indica and screened for its antimicrobial potential.

    METHODS: The selected endophyte was identified by 16s rRNA partial genome sequencing and investigated for their antimicrobial potency. The preliminary phytochemical tests were conducted for the affirmation of phytoconstituents in the endophytic crude ethyl acetate extract of T. indica (TIM) and total phenolic content was performed. The antimicrobial potential of TIM was evaluated against human pathogenic ATCC gram-positive and gram-negative bacterial strains.

    RESULTS: TIM exhibited an appreciable amount of gallic acid equivalent phenolic content (21.6 ± 0.04 mg GAE/g of crude extract). TIM showed the Minimum Inhibitory Concentration (MIC) at 250 μg/mL and Minimum Bactericidal Concentration (MBC) at 500 μg/mL among the selected human pathogenic ATCC strains. At MIC of 500 μg/mL, TIM displayed a significant zone of inhibition against P. aeruginosa and N. gonorrhoeae.

    CONCLUSION: The results from our study highlighted for the first time the antimicrobial potential of endophytic bacterial strain Bacillus velezensis in T. indica leaves and it could be further explored as a source of natural antimicrobial agents.

    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  14. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Drug Des Devel Ther, 2014;8:1029-36.
    PMID: 25114509 DOI: 10.2147/DDDT.S63753
    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  15. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Drug Dev Res, 2019 02;80(1):179-186.
    PMID: 30570767 DOI: 10.1002/ddr.21508
    In the quest for discovering potent antimicrobial agents with lower toxicity, we envisioned the design and synthesis of nalidixic acid-D-(+)-glucosamine conjugates. The novel compounds were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. Cytotoxicity using MTT assay over L6 skeletal myoblast cell line, ATCC CRL-1458 was carried out. In vitro antimicrobial assay revealed that 1-ethyl-7-methyl-4-oxo-N-(1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide (5) and 1-ethyl-7-methyl-4-oxo-N-(2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide(6) possess growth inhibitory activity against resistant Escherichia coli NCTC, 11954 (MIC 0.1589 mM) and Methicillin resistant Staphylococcus aureus ATCC, 33591 (MIC 0.1589 mM). Compound (5) was more active against Listeria monocytogenes ATCC 19115 (MIC 0.1113 mM) in comparison with the reference nalidixic acid (MIC 1.0765 mM). Interestingly, compound (6) had potential antifungal activity against Candida albicans ATCC 10231 (MIC <0.0099 mM). Remarkably, the tested compounds had low cytotoxic effect. This study indicated that glucosamine moiety inclusion into the chemical structure of the marketed nalidixic acid enhances antimicrobial activity and safety.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  16. Williams JD, Moosdeen F, Teoh-Chan CH, Lim VK, Jayanetra P
    Eur J Epidemiol, 1989 Jun;5(2):207-13.
    PMID: 2504618
    Antibiotic resistance in Gram-negative bacteria, particularly Salmonella and Shigella, requires surveillance worldwide. This study describes results of surveys in Hong Kong, Bangkok and Kuala Lumpur. All strains were isolated in hospitals which have large community catchment areas in addition to specialised hospital units. The prevalence of resistant strains was high in all areas. Gram-negative bacteria such as Enterobacter associated with hospital infections were resistant to penicillins and cephalosporins, with gentamicin resistance ranging from about 20% in Kuala Lumpur and Hong Kong, to 35% in Bangkok. Ninety-seven percent of Shigella isolated in Thailand were resistant to ampicillin. About 10% of Salmonella were resistant to chloramphenicol in all three centres.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  17. Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin AS
    Eur J Med Chem, 2011 Sep;46(9):3788-94.
    PMID: 21712145 DOI: 10.1016/j.ejmech.2011.05.044
    Two novel series of hydrazinyl thiazolyl coumarin derivatives have been synthesized and fully characterized by IR, (1)H NMR, (13)C NMR, elemental analysis and mass spectral data. The structures of some compounds were further confirmed by X-ray crystallography. All of these derivatives, 10a-d and 15a-h, were screened in vitro for antimicrobial activity against various bacteria species including Mycobacterium tuberculosis and Candida albicans. The compounds 10c, 10d and 15e exhibited very good activities against all of the tested microbial strains.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  18. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  19. Pulingam T, Thong KL, Appaturi JN, Nordin NI, Dinshaw IJ, Lai CW, et al.
    Eur J Pharm Sci, 2020 Jan 15;142:105087.
    PMID: 31626968 DOI: 10.1016/j.ejps.2019.105087
    Graphene oxide (GO) has displayed antibacterial activity that has been investigated in the past, however, information on synergistic activity of GO with conventional antibiotics is still lacking. The objectives of the study were to determine the combinatorial actions of GO and antibiotics against Gram-positive and Gram-negative bacteria and the toxicological effects of GO towards human epidermal keratinocytes (HaCaT). Interactions at molecular level between GO and antibiotics were analyzed using Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). Changes in the antibacterial activity of antibiotics towards bacteria through the addition of GO was investigated. Toxicity of GO towards HaCaT cells were examined as skin cells play a role as the first line of defense of the human body. The ATR-FTIR characterizations of GO and antibiotics showed adsorption of tested antibiotics onto GO. The combinatorial antibacterial activity of GO and antibiotics were found to increase when compared to GO or antibiotic alone. This was attributed to the ability of GO to disrupt bacterial membrane to allow for better adsorption of antibiotics. Cytotoxicity of GO was found to be dose-dependent towards HaCaT cell line, it is found to impose negligible toxic effects against the skin cells at concentration below 100 μg/mL.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  20. Darah I, Tong WY, Nor-Afifah S, Nurul-Aili Z, Lim SH
    Eur Rev Med Pharmacol Sci, 2014;18(2):171-8.
    PMID: 24488904
    Caulerpa (C.) sertularioides has many therapeutic uses in the practice of traditional medicine in Malaysia. Crude methanolic, diethyl ether extract, ethyl acetate extract and butanolic extract from C. sertularioides were subjected to antimicrobial screening including the three Gram-positive and three Gram-negative diarrhea-caused bacteria.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links