Displaying publications 1 - 20 of 1941 in total

  1. Aaqillah-Amr MA, Hidir A, Noordiyana MN, Ikhwanuddin M
    Anim. Reprod. Sci., 2018 Aug;195:274-283.
    PMID: 29910008 DOI: 10.1016/j.anireprosci.2018.06.005
    This study describes the fatty acids, total carotenoids, and cell diameter characteristics of the female ovary and hepatopancreas of the mud crab, Scylla olivacea, with comparisons at different ovarian maturation stages. Seventy-one S. olivacea individuals at all stages of ovarian maturation were sampled from the Setiu wetlands, Terengganu, Malaysia. The ovary and hepatopancreas of each crab were used for morphological studies, histological and biochemical analyses (fatty acid composition and total carotenoids). Morphological observations indicated there was an increase in ovarian gonado-somatic index (GSI), with color changes from translucent to dark red; however, a relatively consistent hepato-somatic index (HSI) in the hepatopancreas, with the color ranging from yellow to yellowish-brown. Histological analysis indicated that oocyte diameter was positively correlated with GSI. Hepatopancreatic tubules had a relatively constant diameter from Stage 2 to 4, with increased proportions of R- and B-cells. Biochemical analysis indicated there was a significant increase in total carotenoids in the ovary during maturation. The hepatopancreas, however, had relatively consistent total carotenoid concentrations that were greater than those of the ovary. Overall, the lipid analysis results indicated there were lesser concentrations of fatty acids in the hepatopancreas, while in the ovary there were increasing concentrations during maturation. The lesser concentrations of fatty acids in the hepatopancreas than ovary suggested that energy was transferred to the ovary for future embryonic and larval development. The relationship between the hepatopancreas and the ovary in nutrient content is an important finding in providing a baseline to formulate an optimal diet for improved mud crab hatchery practices.
    Matched MeSH terms: Brachyura/growth & development*; Ovary/growth & development*; Hepatopancreas/growth & development*
  2. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T
    Mol. Cell. Biochem., 2013 Apr;376(1-2):11-20.
    PMID: 23238871 DOI: 10.1007/s11010-012-1543-0
    Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism; Transforming Growth Factor beta1/pharmacology*
  3. Ab-Rahim S, Selvaratnam L, Kamarul T
    Cell Biol. Int., 2008 Jul;32(7):841-7.
    PMID: 18479947 DOI: 10.1016/j.cellbi.2008.03.016
    Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.
    Matched MeSH terms: Transforming Growth Factor beta1/pharmacology*
  4. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz. J. Microbiol., 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Enterobacter/growth & development; Klebsiella pneumoniae/growth & development
  5. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  6. Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S
    J. Periodontol., 2016 07;87(7):837-47.
    PMID: 26846966 DOI: 10.1902/jop.2016.150610
    BACKGROUND: This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs).

    METHODS: Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay.

    RESULTS: ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35).

    CONCLUSIONS: ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/physiology*
  7. Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V
    Appl. Microbiol. Biotechnol., 2013 Apr;97(7):3207-13.
    PMID: 22576946 DOI: 10.1007/s00253-012-4135-8
    The potential for using agricultural and industrial by-products as substrate for the production of the edible mushroom, Auricularia polytricha, was evaluated using several formulations of selected palm oil wastes mixed with sawdust and further supplemented with selected nitrogen sources. The best substrate formulations were sawdust (SD) mixed with oil palm frond (OPF; 90:10) added with 15% spent grain (SG) and sawdust mixed with empty fruit bunch (EFB; 50:50) added with 10% spent grain (SG) with mycelia growth rate of 8 mm/day and 7 mm/day respectively. These two substrate formulations were then subjected to different moisture content levels (65%, 75% and 85%). Highest total fresh sporophore yield at 0.43% was obtained on SD+OPF (90:10)+15% SG at 85% moisture content, followed closely by SD+EFB (50:50)+10% SG with 0.40% total yield, also at 85% moisture content. Each of the substrate formulations at 85% moisture content gave the highest biological efficiency (BE) at 288.9% and 260.7%, respectively. Both yield and biological efficiency of A. polytricha on these two formulations were almost three times higher when compared to sawdust substrate alone, thus proving the potential of these formulations to improve yield of this mushroom.
    Matched MeSH terms: Basidiomycota/growth & development*; Spores, Fungal/growth & development*; Mycelium/growth & development*
  8. Abdalkareem EA, Ong CY, Lim BH, Khoo BY
    Cytotechnology, 2018 Oct;70(5):1363-1374.
    PMID: 29802489 DOI: 10.1007/s10616-018-0228-2
    The interleukin-21 (IL-21) protein was found to be expressed at an elevated level in clinical samples of colorectal cancer patients without or with a parasitic infection that were collected from Sudan in our previous study. The IL-21 gene in HT29 and HCT116 cells was then correlated to cell proliferation and cell migration, as well as the cellular mechanisms associated with gene expressions in our present study. Our results demonstrated that silencing the IL-21 gene in HCT116 cells increased the cytotoxic level and fibroblast growth factor-4 (FGF4) mRNA expression in the cancer cells. Moreover, specific gene silencing reduced the migration of cancer cells compared to non-silenced cancer cells. These events were not observed in IL-21-silenced HT29 cells. Neutralizing FGF4 in conditioned medium of IL-21-silenced HCT116 cells further increased the cytotoxic level and restored the migratory activity of HCT116 cells in the culture compared to silencing the IL-21 gene alone in the cancer cells. Our results indicate the importance of both silencing the IL-21 gene and co-expression of the FGF4 protein in HCT116 cells, which pave the way for the discovery of important factors to be used as biomarkers for the design of drugs or cost-effective supplements to effectively treat the patients having infectious disease and HCT116 cells of colorectal cancer simultaneously in the future.
    Matched MeSH terms: Fibroblast Growth Factor 4
  9. Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A
    Mol Med Rep, 2018 Aug;18(2):2441-2448.
    PMID: 29901194 DOI: 10.3892/mmr.2018.9155
    Angiogenesis plays a crucial role in malignant tumor progression and development. The present study aimed to identify lead plants with selective anti-angiogenic properties. A total of 26 methanolic extracts obtained from 18 plants growing in Saudi Arabia and Jordan that belong to the Lamiaceae family were screened for their cytotoxic and anti-angiogenic activities using MTT and rat aortic ring assays, respectively. Four novel extracts of Thymbra capitata (L.) Cav., Phlomis viscosa Poir, Salvia samuelssonii Rech.f., and Premna resinosa (Hochst.) Schauer were identified for their selective anti-angiogenic effects. These extracts did not exhibit cytotoxic effects on human endothelial cells (EA.hy926) indicating the involvement of indirect anti-angiogenic mechanisms. The active extracts are potential candidates for further phytochemical and mechanistic studies.
    Matched MeSH terms: Aorta/growth & development
  10. Abdelrahman MZ, Zeehaida M, Rahmah N, Norsyahida A, Madihah B, Azlan H, et al.
    Parasitol. Int., 2012 Sep;61(3):508-11.
    PMID: 22575692 DOI: 10.1016/j.parint.2012.04.005
    Strongyloides stercoralis infection can persist in the host for several decades, and patients with cancer and other clinical conditions who are exposed to immunosuppressive therapy are at risk of developing hyperinfection.
    Matched MeSH terms: Strongyloides stercoralis/growth & development
  11. Abdeshahian P, Samat N, Hamid AA, Yusoff WM
    J. Ind. Microbiol. Biotechnol., 2010 Jan;37(1):103-9.
    PMID: 19937085 DOI: 10.1007/s10295-009-0658-0
    The production of beta-mannanase from palm kernel cake (PKC) as a substrate in solid substrate fermentation (SSF) was studied using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate, on beta-mannanase production were evaluated by response surface methodology (RSM) on the basis of a central composite face-centered (CCF) design. Eighteen trials were conducted in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for seven days under SSF process. The highest level of beta-mannanase (2117.89 U/g) was obtained when SSF process was performed at incubation temperature, initial moisture level and aeration rate of 32.5 degrees C, 60% and 0.5 l/min, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had significant effects on the production of beta-mannanase (P < 0.01). A similar analysis also demonstrated that the linear effect of initial moisture level and an interaction effect between the initial moisture content and aeration rate significantly influenced the production of beta-mannanase (P < 0.01). The statistical model suggested that the optimal conditions for attaining the highest level of beta-mannanase were incubation temperature of 32 degrees C, initial moisture level of 59% and aeration rate of 0.5 l/min. A beta-mannanase yield of 2231.26 U/g was obtained when SSF process was carried out under the optimal conditions described above.
    Matched MeSH terms: Aspergillus niger/growth & development
  12. Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S
    Virol. J., 2017 11 21;14(1):229.
    PMID: 29162124 DOI: 10.1186/s12985-017-0895-1
    BACKGROUND: The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated.

    METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.

    RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.

    CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.

    Matched MeSH terms: Dengue Virus/growth & development
  13. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J. Sci. Food Agric., 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Fruit/growth & development; Mangifera/growth & development
  14. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
    Matched MeSH terms: Bifidobacterium/growth & development*
  15. Abdul Munir Abdul Murad, Rafidah Badrun, Sakina Shahabudin, Shazilah Kamaruddin, Madihah Ahmad Zairun, Farahayu Khairuddin, et al.
    Sains Malaysiana, 2013;42:715-724.
    Kitin merupakan polisakarida struktur yang dapat dicurai oleh enzim kitinolisis kepada pelbagai terbitan yang boleh digunakan dalam bidang perubatan, pertanian dan rawatan air. Pengenalpastian dan pencirian gen-gen Trichoderma virens UKM1 mengekod enzim terlibat dalam pencuraian kitin krustasea telah dilakukan melalui penjanaan penanda jujukan terekspres (ESTs) dan analisis pengekspresan gen menggunakan mikroatur DNA. Sebanyak tiga perpustakaan cDNA T. virens UKM1 yang masing-masing diaruh oleh kitin, glukosamina dan kitosan telah dibina. Sejumlah 1536 klon cDNA telah dijujuk dan sebanyak 1033 ESTs berkualiti telah dijana. Seterusnya, perbezaan pengekspresan gen apabila pertumbuhan kulat diaruh dengan kehadiran kitin krustasea dan tanpa kitin pada hari ketiga dan kelima telah ditentukan. Sebanyak 1824 klon cDNA telah dititik ke atas slaid kaca dan dihibrid bersama dengan cDNA terlabel Cy3 atau Cy5 yang disintesis daripada mRNA yang dipencil daripada kulat yang ditumbuhkan dalam medium mengandungi kitin krustasea atau glukosa (kawalan). Sebanyak 91 dan 61 gen, masing-masing bagi hari ketiga dan kelima didapati terekspres melebihi dua gandaan apabila kulat menggunakan kitin krustasea sebagai sumber karbon. Beberapa gen mengekod kitinase seperti ech1 dan cht3 (endokitinase), nag1 (eksokitinase) dan nagB (glukosamina 6-P-deaminase) didapati terekspres dengan tinggi pada kedua-dua hari. Selain daripada itu, gen mengekod protein hidrofobin, protease serina dan beberapa protein hipotetik juga terekspres dengan tinggi dengan kehadiran kitin krustasea. Protein-protein ini dijangka memainkan peranan penting dalam membantu pencuraian kitin krustasea.
    Matched MeSH terms: Growth Differentiation Factor 15
  16. Abdul Rahman H, Manzor NF, Tan GC, Tan AE, Chua KH
    Med. J. Malaysia, 2008 Jul;63 Suppl A:57-8.
    PMID: 19024982
    Angiogenic induction was made to promote angiogenesis by differentiating stem cells towards endothelial cells. However, the stemness property of induced cells has not been revealed yet. Hence, we aim to evaluate the differential mRNA expression of stemness genes in human chorion-derived stem cells (CDSC) after being cultured in EDM50 comprised bFGF and VEGF. Results indicated that CDSC cultured in EMD50 expressed significantly higher mRNA level of Sox-2, FZD9, BST-1 and Nestin. In addition Oct-4, FGF-4 and ABCG-2 were also upregulated. Our finding suggested that CDSC after angiogenic induction enhanced its stem cell properties. This could be contributed for the mechanism of stem cell therapy in ischemic problem.
    Matched MeSH terms: Fibroblast Growth Factor 4/genetics*
  17. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob. Agents Chemother., 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Pseudomonas aeruginosa/growth & development; Acinetobacter baumannii/growth & development
  18. Abdul-Hadi A, Mansor S, Pradhan B, Tan CK
    Environ Monit Assess, 2013 May;185(5):3977-91.
    PMID: 22930185 DOI: 10.1007/s10661-012-2843-2
    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
    Matched MeSH terms: Phytoplankton/growth & development
  19. Abdul-Hamid H, Mencuccini M
    Tree Physiol., 2009 Jan;29(1):27-38.
    PMID: 19203930 DOI: 10.1093/treephys/tpn001
    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.
    Matched MeSH terms: Acer/growth & development; Fraxinus/growth & development
  20. Abdul-Manan AF, Baharuddin A, Chang LW
    Eval Program Plann, 2015 Oct;52:39-49.
    PMID: 25898073 DOI: 10.1016/j.evalprogplan.2015.03.007
    Theory-based evaluation (TBE) is an effectiveness assessment technique that critically analyses the theory underlying an intervention. Whilst its use has been widely reported in the area of social programmes, it is less applied in the field of energy and climate change policy evaluations. This paper reports a recent study that has evaluated the effectiveness of the national biofuel policy (NBP) for the transport sector in Malaysia by adapting a TBE approach. Three evaluation criteria were derived from the official goals of the NBP, those are (i) improve sustainability and environmental friendliness, (ii) reduce fossil fuel dependency, and (iii) enhance stakeholders' welfare. The policy theory underlying the NBP has been reconstructed through critical examination of the policy and regulatory documents followed by a rigorous appraisal of the causal link within the policy theory through the application of scientific knowledge. This study has identified several weaknesses in the policy framework that may engender the policy to be ineffective. Experiences with the use of a TBE approach for policy evaluations are also shared in this report.
    Matched MeSH terms: Population Growth
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links