Displaying publications 1 - 20 of 277 in total

Abstract:
Sort:
  1. Regueiro M, Rivera L, Chennakrishnaiah S, Popovic B, Andjus S, Milasin J, et al.
    Gene, 2012 Aug 10;504(2):296-302.
    PMID: 22609956 DOI: 10.1016/j.gene.2012.04.093
    One of the primary unanswered questions regarding the dispersal of Romani populations concerns the geographical region and/or the Indian caste/tribe that gave rise to the proto-Romani group. To shed light on this matter, 161 Y-chromosomes from Roma, residing in two different provinces of Serbia, were analyzed. Our results indicate that the paternal gene pool of both groups is shaped by several strata, the most prominent of which, H1-M52, comprises almost half of each collection's patrilineages. The high frequency of M52 chromosomes in the two Roma populations examined may suggest that they descend from a single founder that has its origins in the Indian subcontinent. Moreover, when the Y-STR profiles of haplogroup H derived individuals in our Roma populations were compared to those typed in the South Indian emigrants from Malaysia and groups from Madras, Karnataka (Lingayat and Vokkaliga castes) and tribal Soligas, sharing of the two most common haplotypes was observed. These similarities suggest that South India may have been one of the contributors to the proto-Romanis. European genetic signatures (i.e., haplogroups E1b1b1a1b-V13, G2a-P15, I-M258, J2-M172 and R1-M173), on the other hand, were also detected in both groups, but at varying frequencies. The divergent European genetic signals in each collection are likely the result of differential gene flow and/or admixture with the European host populations but may also be attributed to dissimilar endogamous practices following the initial founder effect. Our data also support the notion that a number of haplogroups including G2a-P15, J2a3b-M67(xM92), I-M258 and E1b1b1-M35 were incorporated into the proto-Romani paternal lineages as migrants moved from northern India through Southwestern Asia, the Middle East and/or Anatolia into the Balkans.
    Matched MeSH terms: Haplotypes*
  2. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    Vet Parasitol, 2020 May;281:109102.
    PMID: 32289653 DOI: 10.1016/j.vetpar.2020.109102
    The present study investigated the genetic profile of the cosmopolitan cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) from Malaysia and the reference data available in the National Center for Biotechnology Information (NCBI) GenBank. A set of sequences of 100 Malaysian samples aligned as 550 characters of the cytochrome c oxidase subunit I (cox1) and 706 characters of the II (cox2) genes revealed ten haplotypes (A1-A10) and eight haplotypes (B1-B8), respectively. The concatenated sequences of cox1 and cox2 genes with a total of 1256 characters revealed 15 haplotypes (AB1-AB15). Analyses indicated that haplotype AB1 was the most frequent and the most widespread haplotype in Malaysia. Overall haplotype and nucleotide diversities of the concatenated sequences were 0.52909 and 0.00424, respectively, with moderate genetic differentiation (FST = 0.17522) and high gene flow (Nm = 1.18). The western population presented the highest genetic diversity (Hd = 0.78333, Pi = 0.01269, Nh = 9), whereas the southern population demonstrated the lowest diversity (Hd = 0.15667, Pi = 0.00019, Nh = 3). The concatenated sequences showed genetic distances ranged from 0.08 % to 4.39 %. There were three aberrant haplotypes in cox2 sequences that highly divergent, suggesting the presence of cryptic species or occurrence of introgression. In the global point of view, the aligned sequences of C. felis revealed 65 haplotypes (AA1-AA65) by the cox1 gene (n = 586), and 27 haplotypes (BB1-BB27) by the cox2 gene (n = 204). Mapping of the haplotype network showed that Malaysian C. felis possesses seven unique haplotypes in both genes with the common haplotypes demonstrated genetic affinity with C. felis from Southeast Asia for cox1 and South America for cox2. The topologies of cox1 and cox2 phylogenetic trees were concordant with relevant grouping pattern of haplotypes in the network but revealed two major lineages by which Malaysian haplotypes were closely related with haplotypes from the tropical region.
    Matched MeSH terms: Haplotypes/genetics
  3. Bahbahani H, Alfoudari A, Al-Ateeqi A, Al Abri M, Almathen F
    Animal, 2024 Mar;18(3):101098.
    PMID: 38377812 DOI: 10.1016/j.animal.2024.101098
    Dromedary camels are a domestic species characterized by various adaptive traits. Limited efforts have been employed toward identifying genetic regions and haplotypes under selection that might be related to such adaptations. These genetic elements are considered valuable sources that should be conserved to maintain the dromedaries' adaptability. Here, we have analyzed whole genome sequences of 40 dromedary camels from different Arabian Peninsula populations to assess their genetic relationship and define regions with signatures of selection. Genetic distinction based on geography was observed, classifying the populations into four groups: (1) North and Central, (2) West, (3) Southwest, and (4) Southeast, with substantial levels of genetic admixture. Using the de-correlated composite of multiple signal approach, which combines four intra-population analyses (Tajima's D index, nucleotide diversity, integrated haplotype score, and number of segregating sites by length), a total of 36 candidate regions harboring 87 genes were identified to be under positive selection. These regions overlapped with 185 haplotype blocks encompassing 1 340 haplotypes, of which 30 (∼2%) were found to be approaching fixation. The defined candidate genes are associated with different biological processes related to the dromedaries' adaptive physiologies, including neurological pathways, musculoskeletal development, fertility, fat distribution, immunity, visual development, and kidney physiology. The results of this study highlight opportunities for further investigations at the whole-genome level to enhance our understanding of the evolutionary pressures shaping the dromedary genome.
    Matched MeSH terms: Haplotypes/genetics
  4. Kevin-Tey WF, Wen WX, Bee PC, Eng HS, Ho KW, Tan SM, et al.
    Hum Immunol, 2023 Mar;84(3):172-185.
    PMID: 36517321 DOI: 10.1016/j.humimm.2022.11.006
    Killer cell immunoglobulin-like receptors (KIR) genotype and haplotype frequencies have been reported to vary distinctly between populations, which in turn contributes to variation in the alloreactivity of natural killer (NK) cells. Utilizing the diverse KIR genes to identify suitable transplant donors would prove challenging in multi-ethnic countries, even more in resource-limited countries where KIR genotyping has not been established. In this study, we determined the KIR genotypes from 124 unrelated Malaysians consisting of the Malays, Chinese, Indians, and aboriginal people through polymerase chain reaction sequence-specific primer (PCR-SSP) genotyping and employing an expectation-maximization (EM) algorithm to assign haplotypes based on pre-established reference haplotypes. A total of 27 distinct KIR haplotypes were discerned with higher frequencies of haplotype A (55.2%) than haplotype B (44.8%). The most frequent haplotypes were cA01:tA01 (55.2%), cB01:tB01 (18.1%), and cB02:tA01 (13.3%), while the least frequent haplotypes were cB03:tB01 (1.2%), cB04:tB03 (0.4%), and cB03:tA01 (0.4%). Several haplotypes were identified to be unique to a specific ethnic group. The genotype with the highest frequency was genotype AB (71.8%), followed by AA (19.4%), and BB (8.9%). The Indians exhibited the lowest genotype AA but the highest genotype BB, whereas genotype BB was absent in the aboriginal people. Despite the limitations, the genotype and haplotypes in the Malaysian population were successfully highlighted. The identification of ethnic-specific KIR genotypes and haplotypes provides the first step to utilizing KIR in identifying suitable transplant donors to further improve the transplant outcome in the Malaysian population.
    Matched MeSH terms: Haplotypes
  5. NurWaliyuddin HZ, Edinur HA, Norazmi MN, Sundararajulu P, Chambers GK, Zafarina Z
    Int. J. Immunogenet., 2014 Dec;41(6):472-9.
    PMID: 25367623 DOI: 10.1111/iji.12161
    The KIR system shows variation at both gene content and allelic level across individual genome and populations. This variation reflects its role in immunity and has become a significant tool for population comparisons. In this study, we investigate KIR gene content in 120 unrelated individuals from the four Malay subethnic groups (Kelantan, Jawa, Banjar and Pattani Malays). Genotyping using commercial polymerase chain reaction-sequence-specific primer (PCR-SSP) kits revealed a total of 34 different KIR genotypes; 17 for Kelantan, 15 for Banjar, 14 for Jawa and 13 for Pattani Malays. Two new variants observed in Banjar Malays have not previously been reported. Genotype AA and haplotype A were the most common in Jawa (0.47 and 0.65, respectively), Banjar (0.37 and 0.52, respectively) and Pattani (0.40 and 0.60, respectively) Malays. In contrast, Kelantan Malays were observed to have slightly higher frequency (0.43) of genotype BB as compared with the others. Based on the KIR genes distribution, Jawa, Pattani and Banjar subethnic groups showed greater similarity and are discrete from Kelantan Malays. A principal component plot carried out using KIR gene carrier frequency shows that the four Malay subethnic groups are clustered together with other South-East Asian populations. Overall, our observation on prevalence of KIR gene content demonstrates genetic affinities between the four Malay subethnic groups and supports the common origins of the Austronesian-speaking people.
    Matched MeSH terms: Haplotypes/genetics
  6. Esa Y, Abdul Rahim KA
    Biomed Res Int, 2013;2013:170980.
    PMID: 24455674 DOI: 10.1155/2013/170980
    This study examines the population genetic structure of Tor tambroides, an important freshwater fish species in Malaysia, using fifteen polymorphic microsatellite loci and sequencing of 464 base pairs of the mitochondrial cytochrome c oxidase I (COI) gene. A total of 152 mahseer samples were collected from eight populations throughout the Malaysia river system. Microsatellites results found high levels of intrapopulation variations, but mitochondrial COI results found high levels of interpopulations differentiation. The possible reasons for their discrepancies might be the varying influence of genetic drift on each marker or the small sample sizes used in most of the populations. The Kelantan population showed very low levels of genetic variations using both mitochondrial and microsatellite analyses. Phylogenetic analysis of the COI gene found a unique haplotype (ER8∗), possibly representing a cryptic lineage of T. douronensis, from the Endau-Rompin population. Nevertheless, the inclusion of nuclear microsatellite analyses could not fully resolve the genetic identity of haplotype ER8∗ in the present study. Overall, the findings showed a serious need for more comprehensive and larger scale samplings, especially in remote river systems, in combination with molecular analyses using multiple markers, in order to discover more cryptic lineages or undescribed "genetic species" of mahseer.
    Matched MeSH terms: Haplotypes/genetics
  7. Laitman Y, Feng BJ, Zamir IM, Weitzel JN, Duncan P, Port D, et al.
    Eur J Hum Genet, 2013 Feb;21(2):212-6.
    PMID: 22763381 DOI: 10.1038/ejhg.2012.124
    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ~2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ~5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750-1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ~650 years ago, and into the Iraqi-Jewish community ~450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews.
    Matched MeSH terms: Haplotypes*
  8. Fong MY, Rashdi SA, Yusof R, Lau YL
    Malar J, 2015;14:91.
    PMID: 25890095 DOI: 10.1186/s12936-015-0610-x
    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates.
    Matched MeSH terms: Haplotypes*
  9. Schurr TG, Wallace DC
    Hum Biol, 2002 Jun;74(3):431-52.
    PMID: 12180765
    In a previous study of Southeast Asian genetic variation, we characterized mitochondrial DNAs (mtDNAs) from six populations through high-resolution restriction fragment length polymorphism (RFLP) analysis. Our analysis revealed that these Southeast Asian populations were genetically similar to each other, suggesting they had a common origin. However, other patterns of population associations also emerged. Haplotypes from a major founding haplogroup in Papua New Guinea were present in Malaysia; the Vietnamese and Malaysian aborigines (Orang Asli) had high frequencies of haplogroup F, which was also seen in most other Southeast Asian populations; and haplogroup B, defined by the Region V 9-base-pair deletion, was present throughout the region. In addition, the Malaysian and Sabah (Borneo) aborigine populations exhibited a number of unique mtDNA clusters that were not observed in other populations. Unfortunately, it has been difficult to compare these patterns of genetic diversity with those shown in subsequent studies of mtDNA variation in Southeast Asian populations because the latter have typically sequenced the first hypervariable segment (HVS-I) of the control region (CR) sequencing rather than used RFLP haplotyping to characterize the mtDNAs present in them. For this reason, we sequenced the HVS-I of Southeast Asian mtDNAs that had previously been subjected to RFLP analysis, and compared the resulting data with published information from other Southeast Asian and Oceanic groups. Our findings reveal broad patterns of mtDNA haplogroup distribution in Southeast Asia that may reflect different population expansion events in this region over the past 50,000-5,000 years.
    Matched MeSH terms: Haplotypes/genetics*
  10. Robert R, Rodrigues KF, Waheed Z, Kumar SV
    PMID: 29521145 DOI: 10.1080/24701394.2018.1448080
    This study is aimed at establishing a baseline on the genetic diversity of the Acropora corals of Sabah, North Borneo based on variations in the partial COI and CYB nucleotide sequences. Comparison across 50 shallow-water Acropora morphospecies indicated that the low substitution rates in the two genes were due to negative selection and that rate heterogeneity between them was asymmetric. CYB appeared to have evolved faster than COI in the Acropora as indicated by differences in the rate of pairwise genetic distance, degrees of transition bias (Ts/Tv), synonymous-to-nonsynonymous rate ratio (dN/dS), and substitution patterns at the three codon positions. Despite the relatively high haplotype diversity (Hd), nucleotide diversity (π) of the haplotype datasets was low due to stringent purifying selection operating on the genes. Subsequently, we identified individual COI and CYB haplotypes that were each extensively shared across sympatrically and allopatrically distributed Indo-Pacific Acropora. These reciprocally common mtDNA types were suspected to be ancestral forms of the genes whereas other haplotypes have mostly evolved from autoapomorphic mutations which have not been fixed within the species even though they are selectively neutral. To our knowledge, this is the first report on DNA barcodes of Acropora species in North Borneo and this understanding will play an important role in the management and conservation of these important reef-building corals.
    Matched MeSH terms: Haplotypes*
  11. Liu X, Saw WY, Ali M, Ong RT, Teo YY
    BMC Genomics, 2014;15:332.
    PMID: 24885517 DOI: 10.1186/1471-2164-15-332
    The HUGO Pan-Asian SNP Consortium (PASNP) has generated a genetic resource of almost 55,000 autosomal single nucleotide polymorphisms (SNPs) across more than 1,800 individuals from 73 urban and indigenous populations in Asia. This has offered valuable insights into the correlation between the genetic ancestry of these populations with major linguistic systems and geography. Here, we attempt to understand whether adaptation to local climate, diet and environment partly explains the genetic variation present in these populations by investigating the genomic signatures of positive selection.
    Matched MeSH terms: Haplotypes
  12. Jing CJ, Seman IA, Zakaria L
    Trop Life Sci Res, 2015 Dec;26(2):45-57.
    PMID: 26868709 MyJurnal
    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
    Matched MeSH terms: Haplotypes
  13. Shaari N'AL, Jaoi-Edward M, Loo SS, Salisi MS, Yusoff R, Ab Ghani NI, et al.
    BMC Genet, 2019 03 25;20(1):37.
    PMID: 30909863 DOI: 10.1186/s12863-019-0741-0
    BACKGROUND: In Malaysia, the domestic water buffaloes (Bubalus bubalis) are classified into the swamp and the murrah buffaloes. Identification of these buffaloes is usually made via their phenotypic appearances. This study characterizes the subspecies of water buffaloes using karyotype, molecular and phylogenetic analyses. Blood of 105 buffaloes, phenotypically identified as swamp, murrah and crossbred buffaloes were cultured, terminated and harvested using conventional karyotype protocol to determine the number of chromosomes. Then, the D-loop of mitochondrial DNA of 10 swamp, 6 crossbred and 4 murrah buffaloes which were identified earlier by karyotyping were used to construct a phylogenetic tree was constructed.

    RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.

    CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.

    Matched MeSH terms: Haplotypes
  14. Bizhanova N, Nanova O, Fadakar D, Grachev A, Hong Z, Mohd Sah SA, et al.
    Sci Rep, 2024 Mar 02;14(1):5186.
    PMID: 38431728 DOI: 10.1038/s41598-024-55807-x
    The Eurasian lynx (Lynx lynx) exhibits geographic variability and phylogenetic intraspecific relationships. Previous morphological studies have suggested the existence of multiple lynx subspecies, but recent genetic research has questioned this classification, particularly in Central Asia. In this study, we aimed to analyse the geographic and genetic variation in Central Asian lynx populations, particularly the Turkestan lynx and Altai lynx populations, using morphometric data and mtDNA sequences to contribute to their taxonomic classification. The comparative analysis of morphometric data revealed limited clinal variability between lynx samples from the Altai and Tien Shan regions. By examining mtDNA fragments (control region and cytochrome b) obtained from Kazakhstani lynx populations, two subspecies were identified: L. l. isabellinus (represented by a unique haplotype of the South clade, H46) and L. l. wrangeli (represented by haplotypes H36, H45, and H47 of the East clade). L. l. isabellinus was recognized only in Tien Shan Mountain, while Altai lynx was likely identical to L. l. wrangeli and found in northern Kazakhstan, Altai Mountain, Saur and Tarbagatai Mountains, and Tien Shan Mountain. The morphological and mtDNA evidence presented in this study, although limited in sample size and number of genetic markers, renders the differentiation of the two subspecies challenging. Further sampling and compilation of whole-genome sequencing data are necessary to confirm whether the proposed subspecies warrant taxonomic standing.
    Matched MeSH terms: Haplotypes
  15. Glanville KP, Coleman JRI, Hanscombe KB, Euesden J, Choi SW, Purves KL, et al.
    Biol Psychiatry, 2020 Mar 01;87(5):419-430.
    PMID: 31570195 DOI: 10.1016/j.biopsych.2019.06.031
    BACKGROUND: The prevalence of depression is higher in individuals with autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Shared genetic etiology is a plausible explanation for the overlap, and in this study we tested whether genetic variation in the major histocompatibility complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression.

    METHODS: We fine-mapped the classical MHC (chr6: 29.6-33.1 Mb), imputing 216 human leukocyte antigen (HLA) alleles and 4 complement component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium Major Depressive Disorder Working Group and the UK Biobank. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants, applying both a region-wide significance threshold (3.9 × 10-6) and a candidate threshold (1.6 × 10-4).

    RESULTS: No HLA alleles or C4 haplotypes were associated with depression at the region-wide threshold. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold for testing in HLA genes in the meta-analysis (odds ratio = 0.98, 95% confidence interval = 0.97-0.99).

    CONCLUSIONS: We found no evidence that an increased risk for depression was conferred by HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia. These results suggest that any HLA or C4 variants associated with depression either are rare or have very modest effect sizes.

    Matched MeSH terms: Haplotypes
  16. Jamsari AF, Jamaluddin JA, Pau TM, Siti-Azizah MN
    Genet Mol Biol, 2011 01;34(1):152-60.
    PMID: 21637559 DOI: 10.1590/S1415-47572011000100026
    Nucleotide sequences of a partial cytochrome c oxidase subunit I gene were used to assess the manner in which historical processes and geomorphological effects may have influenced genetic structuring and phylogeographic patterns in Channa striata. Assaying was based on individuals from twelve populations in four river systems, which were separated into two regions, the eastern and western, of the biodiversely rich state of Perak in central Peninsular Malaysia. In 238 specimens, a total of 368-bp sequences with ten polymorphic sites and eleven unique haplotypes were detected. Data on all the twelve populations revealed incomplete divergence due to past historical coalescence and the short period of separation. Nevertheless, SAMOVA and F(ST) revealed geographical structuring existed to a certain extent in both regions. For the eastern region, the data also showed that the upstream populations were genetically significantly different compared to the mid- and downstream ones. It is inferred that physical barriers and historical processes played a dominant role in structuring the genetic dispersal of the species. A further inference is that the Grik, Tanjung Rambutan and Sungkai are potential candidates for conservation and aquaculture programmes since they contained most of the total diversity in this area.
    Matched MeSH terms: Haplotypes
  17. Uthamas Suppapan, Jamjun Pechsiri, Sompong O-thong, Arunrat Vanichanon, Pradit Sangthong, Verakiat Supmee
    Sains Malaysiana, 2017;46:2251-2261.
    Population genetic structure of Varuna litterata living along the coast of Thailand were examined in this study. The samples were collected from 3 coastal regions: The Andaman sea (Satun, Trang, Phang Nga), the lower Gulf of Thailand (Pattani, Songkhla, Nakhon Si Thammarat) and the upper Gulf of Thailand (Petchburi, Samut Songkram, Rayong, Trat). Intraspecific variation was determined based on partial sequences of the cytochrome oxidase subunits I gene. A total of 182 samples were collected but only 32 haplotypes were obtained from these samples. An excess of rare haplotypes indicated that the female effective population size of V. litterata living along the coast of Thailand is large. Estimated values of haplotype diversity and nucleotide diversity were 0.790 and 0.003, respectively. The AMOVA (analysis of molecular variance) and phylogenetic analysis results showed that based on genetic variation, the population of this organism was found to have 2 genetically different populations: The Andaman sea population and the Gulf of Thailand population. Genetic exchange of V. litterata among populations inhabiting along the coast of Thailand could be described by the stepping stone model. The results of neutrality tests, both Tajima's D and Fu's Fs statistics, yielded negative values (-1.992 and -26.877, respectively) and statistically significant deviation from the neutrality, indicating that the V. litterata living along the Thailand coast had experienced population expansion. Mismatch distribution analysis indicated that a possible expansion occurred 211,428 years ago during the Pleistocene glaciations period.
    Matched MeSH terms: Haplotypes
  18. Tan MP, Amornsakun T, Siti Azizah MN, Habib A, Sung YY, Danish-Daniel M
    Mitochondrial DNA B Resour, 2019 Sep 12;4(2):2966-2969.
    PMID: 33365813 DOI: 10.1080/23802359.2019.1662741
    Eighty-four specimens collected from 13 populations from Malaysia, Thailand, and Vietnam were analysed, revealing 21 putative haplotypes with overall estimated haplotype and nucleotide diversities of 0.79 and 0.0079, respectively. High levels of diversity and an absence of founder effects were observed among populations in peninsular Malaysia. In contrast, populations from Sarawak exhibited low genetic diversity, which is a typical sign of colonies introduced from a single source. Historical translocation of Trichopodus pectoralis from Thailand to Malaysia, as well as to the Philippines, Indonesia, and Myanmar was apparent. Historical introduction of T. pectoralis from Vietnam was also detected in peninsular Malaysia.
    Matched MeSH terms: Haplotypes
  19. Leaw CP, Tan TH, Lim HC, Teng ST, Yong HL, Smith KF, et al.
    Harmful Algae, 2016 05;55:137-149.
    PMID: 28073527 DOI: 10.1016/j.hal.2016.02.010
    In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1-L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.
    Matched MeSH terms: Haplotypes
  20. Mohd Aizat Zain, Nor Zuraida Zainal, Sharmilla Kanagasundram, Zahurin Mohamed
    Neuroscience Research Notes, 2018;1(1):11-20.
    MyJurnal
    Genetic hereditary has been implicated in bipolar disorder pathogenesis. The PDLIM5 and HTR2A genes have been investigated for its association with bipolar disorder in various populations, however, the results have been conflicting. In this study, we investigate the association between bipolar disorder and the two genes of interest, PDLIM5 and HTR2A genes. We recruited 253 bipolar disorder patients (75 Malays, 104 Chinese, and 74 Indians) and 505 control individuals (198 Malays, 155 Chinese, and 152 Indians) from three ethnic groups within Malaysian population. We genotyped for 3 SNPs of the PDLIM5 (rs2433320, rs2433322 and rs2438146) and 3 SNPs of the HTR2A (rs6313, rs2070040 and rs6311). Significant associations between bipolar disorder and each of the 3 SNPs of PDLIM5 in Malays, Indians and pooled samples. However, only rs2438146 remains significant in the Malays as co-dominant (T/T vs. C/C, p=0.004, OR=0.128, 95%CI=0.031-0.524) and recessive genetic models (T/T vs. C/T+C/C, p=0.003, OR=0.122, 95%CI=0.030-0.494) after applying conservative Bonferroni correction. Haplotype analysis of 3 SNPs of PDLIM5 also showed a significant association with bipolar disorder. No association was observed between bipolar disorder and each of the 3 SNPs of HTR2A in any of the ethnicities. We conclude that PDLIM5 polymorphisms are associated with bipolar disorder in the pooled analysis. After stratification to different ethnic groups, the association remains significant in the Malay and Indian groups. The association is also supported by the significant association in haplotype analysis of PDLIM5. We also conclude there is no association between the HTR2A polymorphisms in the Malaysian population.
    Matched MeSH terms: Haplotypes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links