Displaying publications 1 - 20 of 180 in total

Abstract:
Sort:
  1. Robin Chang YH, Jiang J, Khong HY, Saad I, Chai SS, Mahat MM, et al.
    ACS Appl Mater Interfaces, 2021 Jun 02;13(21):25121-25136.
    PMID: 34008948 DOI: 10.1021/acsami.1c04759
    Transition metal chalcogenides (TMCs) have gained worldwide interest owing to their outstanding renewable energy conversion capability. However, the poor mechanical flexibility of most existing TMCs limits their practical commercial applications. Herein, triggered by the recent and imperative synthesis of highly ductile α-Ag2S, an effective approach based on evolutionary algorithm and ab initio total-energy calculations for determining stable, ductile phases of bulk and two-dimensional Ag
    x
    Se1-x and Ag
    x
    Te1-x compounds was implemented. The calculations correctly reproduced the global minimum bulk stoichiometric P212121-Ag8Se4 and P21/c-Ag8Te4 structures. Recently reported metastable AgTe3 was also revealed but it lacks dynamical stability. Further single-layered screening unveiled two new monolayer P4/nmm-Ag4Se2 and C2-Ag8Te4 phases. Orthorhombic Ag8Se4 crystalline has a narrow, direct band gap of 0.26 eV that increases to 2.68 eV when transforms to tetragonal Ag4Se2 monolayer. Interestingly, metallic P21/c-Ag8Te4 changes to semiconductor when thinned down to monolayer, exhibiting a band gap of 1.60 eV. Present findings confirm their strong stability from mechanical and thermodynamic aspects, with reasonable Vickers hardness, bone-like Young's modulus (E) and high machinability observed in bulk phases. Detailed analysis of the dielectric functions ε(ω), absorption coefficient α(ω), power conversion efficiency (PCE) and refractive index n(ω) of monolayers are reported for the first time. Fine theoretical PCE (SLME method ∼11-28%), relatively high n(0) (1.59-1.93), and sizable α(ω) (104-105 cm-1) that spans the infrared to visible regions indicate their prospects in optoelectronics and photoluminescence applications. Effective strategies to improve the temperature dependent power factor (PF) and figure of merit (ZT) are illustrated, including optimizing the carrier concentration. With decreasing thickness, ZT of p-doped Ag-Se was found to rise from approximately 0.15-0.90 at 300 K, leading to a record high theoretical conversion efficiency of ∼12.0%. The results presented foreshadow their potential application in a hybrid device that combines the photovoltaic and thermoelectric technologies.
    Matched MeSH terms: Hardness
  2. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Hardness
  3. Fikry M, Yusof YA, M Al-Awaadh A, Abdul Rahman R, Chin NL, Ghazali HM
    Antioxidants (Basel), 2019 Jul 18;8(7).
    PMID: 31323854 DOI: 10.3390/antiox8070226
    Full-fat roasted date seeds are considered an excellent source of antioxidants which can treat many diseases. The specific objectives were to investigate the effect of roasting temperature and time on the hardness of whole seeds, moisture content of the roasted date seeds powder, DPPH radical scavenging activity, total phenolic contents, extraction yield, pH, browning index and sensory properties of the brew prepared from the full-fat roasted date seeds and to construct descriptive models that could describe this effect. Date seeds were roasted at three temperatures (160, 180 and 200 °C) for different period of times (10, 20 and 30 min) using a natural conventional oven; then grinded and next brewed. Hardness of whole seeds, moisture content of the seeds powder, DPPH radical scavenging activity and total phenolic contents, extraction yield, pH and browning index and sensory properties of the brew were significantly affected by the roasting conditions. The statistical results indicated that the proposed model could adequately describe the measured properties. Strong correlations have been found among the properties of the brew as well. The producers of the date seeds brew can utilize these results for controlling the roasting process.
    Matched MeSH terms: Hardness
  4. Yeow PT, Taylor SP
    Appl Ergon, 1990 Dec;21(4):285-93.
    PMID: 15676784
    An opportunity arose in 1985 to become involved in a transition of working practice from hard copy to VDT. Over a two-year period, 161 VDT users and 65 control subjects in the same office environment were regularly and routinely examined for symptoms of asthenopia. The analysis of data shows that there are no significant differences in type, number and frequency of the work-related symptoms between VDT users and non-VDT users. It appears that reporting of symptoms within the group may be random, although certain symptoms do appear more frequently than others. Additionally, it appears that there is a significant difference between male and female users in the frequency of symptom reporting.
    Matched MeSH terms: Hardness
  5. Lim, Siau Peng, Fazal Reza, Zaihan Ariffin
    MyJurnal
    The purpose of this study was to evaluate hardness (indicator for polymerization) and thickness of two types of resin cement at coronal, middle and apical level of tooth root canal. Ten extracted maxillary incisors were instrumented and post space was prepared for cementation of titanium post. Samples were divided into two groups and each group was cemented either of the two types of resin cements; Panavia F [dual-cured (PF)] and Rely X Luting 2 [self-cured (RL)]. The teeth were longitudinally sectioned; hardness and thickness was measured using Vickers hardness tester and a microscope (Leica DMLM). SEM observations along the cement line at the 3 different root levels were performed. Statistical analysis was performed to test significance of differences in hardness and thickness of the two types of cement (t-test; p= 0.05) and at different levels of the same type (one-way ANOVA followed by multiple comparison; p= 0.05). Significant difference of hardness was found at the apical level between the two groups and between the coronal and apical level of PF (p0.05). Moreover, voids were more obvious within the dual-cured group of cement. Dual-cured resin cement was found to be less polymerized than self-cured type at apical level. Increased thicknesses of resin cements in comparison to post space size were observed in both groups. Use of metallic post with resin cements needs further evaluation.
    Matched MeSH terms: Hardness
  6. Tengku Yasmin Tengku Azam, Quah, Xin Ying, Ismail Ab Rahman, Sam’an Malik Masudi, Norhayati Luddin, Rashita Abd Rashid
    MyJurnal
    Glass ionomer cement (GIC) has theunique fluoride release property and able to formionic bond with tooth structure. However, the brittleness of the material results in low hardness. In the present study, a new approach in utilization of local waste materials as fillers for improvement of hardness of GIC is reported.The synthesized wollastonite and mine-silica by-product were individually incorporated into commercial GIC and the Vickers hardness were evaluated. The results shown that the incorporation of 1 % wollastonite into GIC gave ~ 6% increment in hardness compared to the control GIC (66.53H ±7.37 versus 62.66HV±2.98)but not for themine-silica. Thus, wollastonite could be a potential material to be utilized as fillersin dental restorative composite
    Matched MeSH terms: Hardness
  7. Farahiyah Mohamad Taib, Zuryati Ab Ghani, Dasmawati Mohamad
    MyJurnal
    Ten percent carbamide peroxide is an effective, safe home bleaching agent. Higher concentrations
    are more effective, but there are mixed reports on their hardness and surface roughness effects on resin composites. To evaluate the effect of home bleaching agents; Opalescence Now 10% carbamide peroxide (Ultradent Products, USA) and Perfect Bleach 17% carbamide peroxide (Voco,
    Germany) on the surface hardness of microhybrid resin composites; Filtek Z250 (3M ESPE, USA) and Point 4 (Kerr, USA) and their surface roughness of selected treatment. Thirty specimens were prepared using acrylic moulds (4mm diameter x2mm thick). N=5 controls placed in distilled water for 14 days.N=5 treated with Opalescence, and n=5 treated with Perfect Bleach for 2 hours every day for 14 days. Surface hardness was tested using Vickers hardness tester FV-7 (Future Tech Corp, Japan). Data analyzed with Mann-Whitney test with (P
    Matched MeSH terms: Hardness
  8. Mior Azrizal M. Ibrahim, Wan Zaripah Wan Bakar, Adam Husein
    MyJurnal
    Composite resins Amaris is claimed to have hydrophobic effect which minimizes the staining intake. This study is to investigate the colour stability of Amaris compared to Filtek Z250 in coffee solution. Sixty discs of composite resins Filtek Z250 (3M ESPE) and Amaris (Voco) with diameter of 5mm and depth of 2mm were fabricated by packing in a drinking straw and sectioned with hard tissue cutter (Exakt, Japan). The surfaces of the specimens were polished with Sof-Lex disc before each group of the samples is immersed in coffee solution. They were kept in the solution for 4 days at 370C and assessed at the period of 2 hours, 1 day, 2 days, 3 days, and 4 days. The staining was assessed visually and recorded using Lobene (1968) Stain Index and score was given accordingly. The colour changes of both groups were not statistically significant (p
    Matched MeSH terms: Hardness
  9. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Hardness
  10. Choi KH, Min JY, Ganesan P, Bae IH, Kwak HS
    Asian-Australas J Anim Sci, 2015 Jan;28(1):120-6.
    PMID: 25557683 DOI: 10.5713/ajas.14.0056
    This study was carried out to investigate physicochemical properties of different concentrations (0.1%, 0.3%, and 0.5%) of red ginseng hydrolyzates (RGH)- or red ginseng extract (RGE)-added Asiago cheeses (AC) during ripening at 14°C for 4 months. The moisture content significantly increased with increasing concentrations of both RGH- and RGE- added AC (p<0.05). While RGHAC and RGEAC were more yellow and darker with increasing concentrations than that of control (p<0.05), the color was not influenced from the hydrolysis. In texture analysis, hardness, cohesiveness, and chewiness of RGHAC and RGEAC significantly decreased compared to the control during the ripening (p<0.05). In sensory analysis, bitterness and ginseng flavor and taste scores increased significantly with increasing the concentrations of RGH and RGE during ripening (p<0.05). In conclusion, the addition of RGH and RGE into cheese slightly influenced the properties of Asiago cheese, and similarities were observed between RGHAC and RGEAC. Thus, the lower concentrations (0.1% to 0.3%) of RGH and RGE added to AC were preferred for color, texture, and sensory during the ripening, therefore, these cheeses would be worth developing commercially.
    Matched MeSH terms: Hardness
  11. Munusamy SM, Helen-Ng LC, Farook MS
    BMC Oral Health, 2024 Feb 01;24(1):162.
    PMID: 38302972 DOI: 10.1186/s12903-024-03905-7
    BACKGROUND: Computer-aided design/computer-aided manufacturing (CAD/CAM) dental composites were introduced with superior mechanical properties than conventional dental composites. However, little is known on effects of dietary solvents on microhardness or inorganic elemental composition of CAD/CAM composites.

    OBJECTIVES: The objectives of this study were to evaluate the degradation effects of each dietary solvent on the microhardness of the different CAD/CAM dental composites and to observe the degradation effects of dietary solvent on the inorganic elements of the dental composites investigated.

    METHODS: Fifty specimens with dimensions 12 mm x 14 mm x 1.5 mm were prepared for direct composite (Filtek Z350 XT [FZ]), indirect composite (Shofu Ceramage [CM]), and three CAD/CAM composites (Lava Ultimate [LU], Cerasmart [CS], and Vita Enamic [VE]). The specimens were randomly divided into 5 groups (n = 10) and conditioned for 1-week at 37°C in the following: air (control), distilled water, 0.02 N citric acid, 0.02 N lactic acid and 50% ethanol-water solution. Subsequently, the specimens were subjected to microhardness test (KHN) using Knoop hardness indenter. Air (control) and representative postconditioning specimens with the lowest mean KHN value for each material were analyzed using energy dispersive X-ray spectroscopy (EDX). Statistical analysis was done using one-way ANOVA and post hoc Bonferroni test at a significance level of p = 0.05.

    RESULTS: Mean KHN values ranged from 39.7 ± 2.7 kg/mm2 for FZ conditioned in 50% ethanol-water solution to 79.2 ± 3.4 kg/mm2 for VE conditioned in air (control). With exception to LU, significant differences were observed between materials and dietary solvents for other dental composites investigated. EDX showed stable peaks of the inorganic elements between air (control) and representative postconditioning specimens.

    CONCLUSIONS: The microhardness of dental composites was significantly affected by dietary solvents, except for one CAD/CAM composite [LU]. However, no changes were observed in the inorganic elemental composition of dental composites between air (control) and 1-week postconditioning.

    Matched MeSH terms: Hardness
  12. Jacobs E, Saralidze K, Roth AK, de Jong JJ, van den Bergh JP, Lataster A, et al.
    Biomaterials, 2016 Mar;82:60-70.
    PMID: 26751820 DOI: 10.1016/j.biomaterials.2015.12.024
    There are a number of drawbacks to incorporating large concentrations of barium sulfate (BaSO4) as the radiopacifier in PMMA-based bone cements for percutaneous vertebroplasty. These include adverse effects on injectability, viscosity profile, setting time, mechanical properties of the cement and bone resorption. We have synthesized a novel cement that is designed to address some of these drawbacks. Its powder includes PMMA microspheres in which gold particles are embedded and its monomer is the same as that used in commercial cements for vertebroplasty. In comparison to one such commercial cement brand, VertaPlex™, the new cement has longer doughing time, longer injection time, higher compressive strength, higher compressive modulus, and is superior in terms of cytotoxicity. For augmentation of fractured fresh-frozen cadaveric vertebral bodies (T6-L5) using simulated vertebroplasty, results for compressive strength and compressive stiffness of the construct and the percentage of the volume of the vertebral body filled by the cement were comparable for the two cements although the radiopacity of the new cement was significantly lower than that for VertaPlex™. The present results indicate that the new cement warrants further study.
    Matched MeSH terms: Hardness
  13. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Hardness
  14. Mohd Khalid H, Jauhari I, Mohamad Wali HA, Abdulrazzaq Mahmod S
    Biomed Mater, 2017 01 25;12(1):015019.
    PMID: 28120816 DOI: 10.1088/1748-605X/aa4f8b
    In this in vivo study, Sprague Dawley (SD) rats were used to investigate the bioactivity as well as the microstructural and mechanical properties of Ti-6Al-4V samples embedded with hydroxyapatite (HA) using two different coating methods-superplastic embedment (SPE) and superplastic deformation (SPD). The HA layer thickness for the SPE and SPD samples increased from 249.1  ±  0.6 nm to 874.8  ±  13.7 nm, and from 206.1  ±  5.8 nm to 1162.7  ±  7.9 nm respectively, after 12 weeks of implantation. The SPD sample exhibited much faster growth of newly formed HA compared to SPE. The growth of the newly formed HA was strongly dependent on the degree of HA crystallinity in the initial HA layer. After 12 weeks of implantation, the surface hardness value of the SPE and SPD samples decreased from 661  ±  0.4 HV to 586  ±  1.3 HV and from 585  ±  6.6 HV to 425  ±  86.9 HV respectively. The decrease in surface hardness values was due to the newly formed HA layer that was more porous than the initial HA layer. However, the values were still higher than the substrate surface hardness of 321  ±  28.8 HV. Wear test results suggest that the original HA layers for both samples were still strongly intact, and to a certain extent the newly grown HA layers also were strongly bound with the original HA layers. This study confirms the bioactivity and mechanical stability of the HA layer on both samples in vivo.
    Matched MeSH terms: Hardness Tests
  15. Joseph Sahaya Anand, T., Sivarao, Ganesh Kumar, K.
    MyJurnal
    Ni3A1 is an intermetallic compound which has unique property with temperature. Annealing is done at temperature 300, 500, and 700°C for 1 hour and analyzed with X-ray Diffraction (XRD) and Energy Dispersive X-ray (EDX) analysis for their crystallographic nature. EDX confirmed the composition of Ni3A1 with exact stoichiometry, whereas the XRD confirmed the crystallographic nature of the material. The mechanical properties by hardness results showed that Ni3A1 has highest Vickers hardness value of 554 HV when it is non-heat treated. Its hardness drops as it undergoes annealing process. Corrosion analysis by tafel test shows that its polarization resistance may increase up to 4145 W cm2 when annealed at high temperature. These results show that Ni3A1 is a promising material to be considered as an alternative automotive body.
    Matched MeSH terms: Hardness
  16. Chew HP, Zakian CM, Pretty IA, Ellwood RP
    Caries Res, 2014;48(3):254-62.
    PMID: 24481141 DOI: 10.1159/000354411
    BACKGROUND: Measurement of initial enamel erosion is currently limited to in vitro methods. Optical coherence tomography (OCT) and quantitative light-induced fluorescence (QLF) have been used clinically to study advanced erosion. Little is known about their potential on initial enamel erosion.

    OBJECTIVES: To evaluate the sensitivity of QLF and OCT in detecting initial dental erosion in vitro.

    METHODS: 12 human incisors were embedded in resin except for a window on the buccal surface. Bonding agent was applied to half of the window, creating an exposed and non-exposed area. Baseline measurements were taken with QLF, OCT and surface microhardness. Samples were immersed in orange juice for 60 min and measurements taken stepwise every 10 min. QLF was used to compare the loss of fluorescence between the two areas. The OCT system, OCS1300SS (Thorlabs Ltd.), was used to record the intensity of backscattered light of both areas. Multiple linear regression and paired t test were used to compare the change of the outcome measures.

    RESULTS: All 3 instruments demonstrated significant dose responses with the erosive challenge interval (p < 0.05) and a detection threshold of 10 min from baseline. Thereafter, surface microhardness demonstrated significant changes after every 10 min of erosion, QLF at 4 erosive intervals (20, 40, 50 and 60 min) while OCT at only 2 (50 and 60 min).

    CONCLUSION: It can be concluded that OCT and QLF were able to detect demineralization after 10 min of erosive challenge and could be used to monitor the progression of demineralization of initial enamel erosion in vitro.

    Matched MeSH terms: Hardness
  17. Chang YHR
    Chem Commun (Camb), 2020 Sep 17;56(74):10962-10965.
    PMID: 32789397 DOI: 10.1039/d0cc04123h
    While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105-106 cm-1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64-12.77 GPa), while retaining ductile nature.
    Matched MeSH terms: Hardness
  18. Lee SC, Lintang HO, Yuliati L
    Chem Asian J, 2012 Sep;7(9):2139-44.
    PMID: 22733646 DOI: 10.1002/asia.201200383
    A urea precursor was used for the first time to prepare mesoporous carbon nitride (MCN) by a thermal polymerization process with silica nanospheres as a hard template. Although the prepared MCN samples have similar structures and optical properties, it was revealed that the specific surface area, pore-size distribution, and morphology of the MCN samples depend on the initial mass ratio of urea to silica. Compared to the bulk carbon nitride (BCN) that only gave 20% phenol removal (6 h of irradiation), the activities can be enhanced up to 74% on MCN samples for photocatalytic removal of phenol under visible-light irradiation. The highest conversion was obtained on MCN with an initial mass ratio of urea to silica of 5, which has high surface area of 191 m(2) g(-1) and a nanoporous structure with uniform pore-size distribution of 7 nm. In addition to the high activity, the MCN sample also showed high photocatalytic stability.
    Matched MeSH terms: Hardness
  19. Lin GSS, Ghani NRNA, Ismail NH, Singbal K, Noorani TY, Mamat N
    Contemp Clin Dent, 2021 03 20;12(1):21-27.
    PMID: 33967533 DOI: 10.4103/ccd.ccd_298_20
    Background: An ideal composite resin should demonstrate smooth surface after polishing and high hardness value to provide long-term success. Thus, this study aimed to compare the surface roughness and microhardness of new experimental zirconia-reinforced rice husk nanohybrid composite (Zr-Hybrid) with commercialized nanofilled (Filtek-Z350-XT) and microhybrid composite (Zmack-Comp) resins before and after artificial ageing.

    Methods: One hundred and eighty standardized disc samples were prepared, of which ninety samples each were used for surface roughness and microhardness test, respectively. They were divided equally into: Group 1 (Filtek-Z350-XT), Group 2 (Zmack-Comp), and Group 3 (Zr-Hybrid). For surface roughness test, all samples were polished with aluminium oxide discs and further subdivided into aged and unaged subgroups, in which composite samples in aged subgroups were subjected to 2500 thermal cycles. Next, all the samples were subjected to surface roughness test using a contact stylus profilometer. As for microhardness test, all the aged and unaged samples were tested using a Vickers hardness machine with a load of 300 kgf for 10 s and viewed under a digital microscope to obtain microhardness value. Data were analyzed using two-way ANOVA followed by post hoc Tukey's honestly significant difference and paired sample t-test with significance level set at P = 0.05.

    Results: In both the aged and unaged groups, Zr-Hybrid showed statistically significantly lower surface roughness (P < 0.05) than Filtek-Z350-XT and Zmack-Comp, but no statistically significant difference was noted between Filtek-Z350-XT and Zmack-Comp (P > 0.05). A similar pattern was noted in microhardness test, whereby Zr-Hybrid showed the highest value (P < 0.05) followed by Filtek-Z350-XT and lastly Zmack-Comp. Besides, significant differences in surface roughness and microhardness were noted between the aged and unaged groups.

    Conclusion: Zr-Hybrid seems to demonstrate better surface roughness and microhardness value before and after artificial ageing.

    Matched MeSH terms: Hardness
  20. Ismail R
    Data Brief, 2019 Aug;25:104166.
    PMID: 31516921 DOI: 10.1016/j.dib.2019.104166
    Generally, a base isolator is made up of alternate layers of steel and rubber. The idea of adopting magnetoreological elastomers (MREs) in base isolator systems was introduced in the past few years in order to improve the efficiency of base isolator systems. The article provides information on the mechanical corresponding to different carbon black loading loadings of 20 parts per hundred rubber (pphr), 40 pphr and 60 pphr in natural rubber compound. The mechanical dataset described the data from tensile, hardness and rebound test.
    Matched MeSH terms: Hardness
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links