Displaying publications 1 - 20 of 176 in total

Abstract:
Sort:
  1. Tan SS, Aminah A, Zhang XG, Abdul SB
    Meat Sci, 2006 Mar;72(3):387-97.
    PMID: 22061722 DOI: 10.1016/j.meatsci.2005.07.012
    This study was designed to explore the potential of refined, bleached and deodorized (RBD) palm oil (PO) and palm stearin (POs) utilization in chicken frankfurters. A 10 points augmented simplex-centroid design was used to study the effect of chicken fat (CF), PO and POs as well as the interaction of these fats on the emulsion, textural and sensory properties of chicken frankfurters. All frankfurters were formulated to contain approx 25% fat, 52% moisture and 10% protein. No significant difference was found in end chopping temperatures of all meat batters even though the temperature of PO and POs upon incorporation into meat batters was 50°C higher than CF. Strong emulsions were formed as no fluid losses were observed in all the meat batters tested after heating. Texture profiles of the frankfurters containing PO and/or CF were quite similar, but increment of POs raised hardness, chewiness, and shear hardness of the frankfurters. Acceptability of the frankfurters was evaluated using hedonic test. Panelists found no difference in hardness preference between frankfurters made from totally CF and PO, while frankfurters made from POs were rated as hard and brittle. CF was important in determining acceptability of the frankfurters, as reduction of CF in formulation resulted in lower scores in chicken flavor, juiciness, oiliness and overall acceptance of the frankfurters. Frankfurters with sensory acceptability comparable to a commercial one were found to comprise of more than 17% CF, and less than 67% PO and 17% POs of the fat blend.
    Matched MeSH terms: Hardness
  2. Mohd Khalid H, Jauhari I, Mohamad Wali HA, Abdulrazzaq Mahmod S
    Biomed Mater, 2017 01 25;12(1):015019.
    PMID: 28120816 DOI: 10.1088/1748-605X/aa4f8b
    In this in vivo study, Sprague Dawley (SD) rats were used to investigate the bioactivity as well as the microstructural and mechanical properties of Ti-6Al-4V samples embedded with hydroxyapatite (HA) using two different coating methods-superplastic embedment (SPE) and superplastic deformation (SPD). The HA layer thickness for the SPE and SPD samples increased from 249.1  ±  0.6 nm to 874.8  ±  13.7 nm, and from 206.1  ±  5.8 nm to 1162.7  ±  7.9 nm respectively, after 12 weeks of implantation. The SPD sample exhibited much faster growth of newly formed HA compared to SPE. The growth of the newly formed HA was strongly dependent on the degree of HA crystallinity in the initial HA layer. After 12 weeks of implantation, the surface hardness value of the SPE and SPD samples decreased from 661  ±  0.4 HV to 586  ±  1.3 HV and from 585  ±  6.6 HV to 425  ±  86.9 HV respectively. The decrease in surface hardness values was due to the newly formed HA layer that was more porous than the initial HA layer. However, the values were still higher than the substrate surface hardness of 321  ±  28.8 HV. Wear test results suggest that the original HA layers for both samples were still strongly intact, and to a certain extent the newly grown HA layers also were strongly bound with the original HA layers. This study confirms the bioactivity and mechanical stability of the HA layer on both samples in vivo.
    Matched MeSH terms: Hardness Tests
  3. Ataollahi Oshkour A, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA
    J Mech Behav Biomed Mater, 2015 Sep;49:321-31.
    PMID: 26072197 DOI: 10.1016/j.jmbbm.2015.05.020
    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
    Matched MeSH terms: Hardness
  4. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Hardness
  5. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Hardness/drug effects
  6. Mior Azrizal M. Ibrahim, Wan Zaripah Wan Bakar, Adam Husein
    MyJurnal
    Composite resins Amaris is claimed to have hydrophobic effect which minimizes the staining intake. This study is to investigate the colour stability of Amaris compared to Filtek Z250 in coffee solution. Sixty discs of composite resins Filtek Z250 (3M ESPE) and Amaris (Voco) with diameter of 5mm and depth of 2mm were fabricated by packing in a drinking straw and sectioned with hard tissue cutter (Exakt, Japan). The surfaces of the specimens were polished with Sof-Lex disc before each group of the samples is immersed in coffee solution. They were kept in the solution for 4 days at 370C and assessed at the period of 2 hours, 1 day, 2 days, 3 days, and 4 days. The staining was assessed visually and recorded using Lobene (1968) Stain Index and score was given accordingly. The colour changes of both groups were not statistically significant (p
    Matched MeSH terms: Hardness
  7. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Hardness
  8. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
    Matched MeSH terms: Hardness
  9. Baradaran S, Basirun WJ, Zalnezhad E, Hamdi M, Sarhan AA, Alias Y
    J Mech Behav Biomed Mater, 2013 Apr;20:272-82.
    PMID: 23453827 DOI: 10.1016/j.jmbbm.2013.01.020
    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C.
    Matched MeSH terms: Hardness
  10. Khairiah Badri, Amamer Musbah Redwan
    Fire-retarding polyurethane (PU) composite was produced by adding 2,4-ditert-butylphenyl phosphite (FR) to palm-based monoester resin with loading percentage of 0, 2, 4, and 6 wt%. The Shore D hardness index increased marginally with increasing FR content. However, the impact and flexural strengths decreased with increasing FR loading attributed to the weak interfacial bonding between FR and PU matrix. The fire test indicated lowering of burning rate (from 5.30 mm.s-1 to 2.80 mm.s-1) as the loading percentage of FR increased. The combustion enthalpy of the composites also decreased with higher loading percentage of FR.
    Matched MeSH terms: Hardness
  11. Chuin HC, Che Husna Azhari, Mohamed Aboras, Masfueh Razali, Andanastuti Muchtar
    Sains Malaysiana, 2018;47:1591-1597.
    This study aimed to improve the colloidal stability of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP)
    suspension through colloidal processing to obtain highly translucent Y-TZP. Agglomeration is often the main complication
    in the processing of nanosized Y-TZP as it deteriorates mechanical and optical properties. Thus, colloidal processing
    is necessary to mitigate the agglomeration in Y-TZP. The colloidal stability of Y-TZP suspension plays a key role for the
    success of colloidal processing. In this study, colloidal processing was conducted at several stages, namely, dispersant
    addition, pH adjustment and sedimentation. Changes in particle size and zeta potential at various stages were recorded.
    The suspensions were then slip-casted to form green bodies. Green bodies were sintered and characterized for density
    and translucency. The results showed that dispersant addition followed by pH adjustment effectively dispersed soft
    agglomerates by introducing electrosteric stabilization, whereas sedimentation successfully segregated hard agglomerates
    and contributed excellent colloidal stability. With high colloidal stability, the translucency of Y-TZP was improved by
    approximately 30%. This study demonstrated different colloidal processing stages and proved that high colloidal stability
    and fine particle size are vital to produce highly translucent Y-TZP.
    Matched MeSH terms: Hardness
  12. Husniyah Aliyah, L., Anuar, H.
    Movement Health & Exercise, 2014;3(1):49-56.
    MyJurnal
    This study focuses on the mechanical effect of different composition of polymer blend. Polymer blend of high density polyethylene (HDPE) and ethylene propylene rubber (EPR) were selected and varied by three different compositions which are 70:30, 50:50 and 30:70. HDPE-EPR blend is believed to be the best material for sole shoe. In which, HDPE has good flexibility while, EPR can maintain optimum performance at high and low temperature as well as provide better gripping characteristic that suits for insole and outsole sport shoe. On the other hand, the time efficiency of electron beam radiation on these polymer blends helps in improving the croslinking of HDPE-EPR blend. The aim of this paper was to find the optimum composition of electron beam irradiated polymer blends for sole shoes especially in sports application. These irradiated polymer blends were produced by melt blending, underwent compression moulding and then were irradiated by electron beam at 100 kGy/s. Mechanical test of tensile and hardness test were investigated and the morphology of the failure fracture was analysed by field emission scanning electron microscopy (FESEM). The polymer blend with 70% of HDPE and 30% of EPR showed the optimum result of tensile strength, tensile modulus and hardness as well as ductile failure image.
    Matched MeSH terms: Hardness; Hardness Tests
  13. Noorlaila A, Hasanah HN, Yusoff A, Sarijo SH, Asmeda R
    J Food Sci Technol, 2017 Oct;54(11):3532-3542.
    PMID: 29051648 DOI: 10.1007/s13197-017-2810-6
    The effects of xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) in sponge cakes were studied. Hydrocolloids enhanced the thickening effect in batter that affected the textural attributes of sponge cakes. During storage, the structural changes in XG-cake resulted in higher hardness compared to HPMC-cake. Similar to XG, HPMC also contributed moistness to cake. The moisture loss of cake containing XG was slower than HPMC-cake. FTIR study showed absorption of OH at region of 3600-2900 cm-1 that explained the strong interaction of water in cake containing XG compared to other cake formulations.
    Matched MeSH terms: Hardness
  14. Chitturi V, Pedapati SR, Awang M
    Materials (Basel), 2019 Nov 26;12(23).
    PMID: 31779107 DOI: 10.3390/ma12233901
    Automobile, aerospace, and shipbuilding industries are looking for lightweight materials for cost effective manufacturing which demands the welding of dissimilar alloy materials. In this study, the effect of tool rotational speed, welding speed, tilt angle, and pin depth on the weld joint were investigated. Aluminum 5052 and 304 stainless-steel alloys were joined by friction stir welding in a lap configuration. The design of the experiments was based on Taguchi's orthogonal array for conducting the experiments with four factors and three levels for each factor. The microstructural analysis showed tunnel defects, micro voids, and cracks which formed with 0° and 1.5° tilt angles. The defects were eliminated when the tilt angle increased to 2.5° and a mixed stir zone was formed with intermetallic compounds. The presence of the intermetallic compounds increased with the increase in tilt angle and pin depth which further resulted in obtaining a defect-free weld. Hooks were formed on either side of the weld zone creating a mechanical link for the joint. A Vickers hardness value of HV 635.46 was achieved in the mixed stir zone with 1000 rpm, 20 mm/min, and 4.2 mm pin depth with a tilt angle of 2.5°, which increased by three times compared to the hardness of SS 304 steel. The maximum shear strength achieved with 800 rpm, 40 mm/min, and a 4.3 mm pin depth with a tilt angle of 2.5° was 3.18 kN.
    Matched MeSH terms: Hardness
  15. Ayatollahi MR, Yahya MY, Karimzadeh A, Nikkhooyifar M, Ayob A
    PMID: 26046269 DOI: 10.1016/j.msec.2015.05.004
    The aim of this study was to investigate the effects of temperature change and immersion in two common beverages on the mechanical and tribological properties for three different types of dental restorative materials. Thermocycling procedure was performed for simulating temperature changes in oral conditions. Black tea and soft drink were considered for beverages. Universal composite, universal nanohybrid composite and universal nanofilled composite, were used as dental materials. The nanoindentation and nanoscratch experiments were utilized to determine the elastic modulus, hardness, plasticity index and wear resistance of the test specimens. The results showed that thermocycling and immersion in each beverage had different effects on the tested dental materials. The mechanical and tribological properties of nanohybrid composite and nanocomposite were less sensitive to temperature change and to immersion in beverages in comparison with those of the conventional dental composite.
    Matched MeSH terms: Hardness
  16. Tan, T.C., Kanyarat, K., Azhar, M.E.
    MyJurnal
    Pasteurized shell eggs are eggs that have been thermally treated to eliminate harmful bacteria, however the treatment may also denature some of the egg white proteins. In this study the degree of denaturation and functional properties (emulsifying, foaming, and gelling properties) of egg white obtained from pasteurized eggs (EWP) were compared with those of unpasteurized eggs (EWUP). Data from differential scanning calorimeter showed that the EWP (ovotransferin, lysozyme, and ovalbumin) denatured at lower temperatures and required lower denaturation enthalpies than EWUP, indicating a partial loss of protein structure during the pasteurization process in the pasteurized eggs. The emulsion and foam stability formed from EWP were significantly (P < 0.05) lower than those of EWUP, however the EWP formed stronger gels than EWUP. To assess suitability of EWP as a cake ingredient, angel food cake was prepared using both egg whites. As compared to EWUP-cake, EWP-cake was significantly (P < 0.05) lower in volume, cohesiveness and springiness values, but significantly (P < 0.05) higher in hardness, gumminess and chewiness. Overall, the sensory panelists gave significantly (P < 0.05) higher scores for angel food cake prepared with EWUP. The differences in functional properties of egg white proteins and the quality of cake were due mainly to the higher levels of denaturation attained by EWP as a result of the pasteurization process.
    Matched MeSH terms: Hardness
  17. Ishak Ahmad, Mohd Khairil Saat, Ibrahim Abdullah, Azizah Baharum
    Blends of fibre-reinforced rubber based on natural rubber-thermoplastic (NR/LLDPE) reinforced by aramid fibre have been done using melt blending process. Two different processing methods were used; internal mixer and extrusion compounding in twin screw extruder. Twaron loading in the system was varied from 0 to 30%. It was found that increasing the amount of aramid fibre led to an increase in the tensile strength, tensile modulus and hardness of the composites while the strain decreased rapidly. The results showed that the optimum composition of filler loading in NR/LLDPE blend is 20%. The ,echanical behaviour was caused by the strong Twaron-matrices interaction in the composites and effective stress concentrating function of Twaron. Composites prepared using the twin-screw extruder have a higher tensile strength and tensile using the twin-screw extruder have a higher tensile stength and tensile modulus but lower impact strength compared to those prepared using internal mixer. Study of the fracture surface by scanning electron microscopy showed that the composite prepared using the internal mixer produced random fiber orientation while the twin-screw extruder produced the fibers aligned to the longitudinal direction. The results indicate that the mechanical properties of the composite were significantly influenced by the processing technique.
    Penyediaan komposit getah asli termoplastik daripada NR/LLDPE yang diperkuat gentian Twaron telah dijalankan melalui proses adunan leburan. Dua kaedah penyediaan yang berbeza digunakan iaitu menggunakan mesin pencampur dalaman manakala kaedah kedua menggunakan pengekstrud skru kembar. Kandungan Twaron di dalam komposit telah diubah daripada 0 hingga 30%. Keputusan menunjukkan bahawa penambahan Twaron telah meningkatkan nilai tegasan maksima, modulus Young dan kekuatan hentaman komposit tetapi menurunkan nilai terikan maksima. Kandungan Twaron yang optimum adalah 20%. Kehadiran Twaron telah membentuk satu jaringan saling tindak gentian-matriks menyebabkan kekuatan regangan komposit meningkat. Twaron juga berfungsi sebagai penyerap hentaman yang berkesan. Penyediaan komposit menggunakan pengekstrud skru berkembar telah menghasilkan nilai kekuatan regangan yang lebih tinggi berbanding penggunaan pencampur dalaman sebaliknya kekuatan hentaman yang lebih rendah. Kajian morfologi menggunakan mikroskop imbasan elektron mendapati komposit yang disediakan menggunakan pencampur dalaman menghasilkan gentian dengan orientasi rawak manakala pengekstrud skru kembar menghasilkan orientasi gentian yang selari. Keputusan ini menunjukkan bahawa sifat mekanik komposit NR/LLDPE yang diperkuat Twaron sangat dipengaruhi oleh teknik pemprosesan.
    Matched MeSH terms: Hardness
  18. Zainon SNM, Azmi WH
    Micromachines (Basel), 2021 Feb 11;12(2).
    PMID: 33670250 DOI: 10.3390/mi12020176
    Many studies have shown the remarkable enhancement of thermo-physical properties with the addition of a small quantity of nanoparticles into conventional fluids. However, the long-term stability of the nanofluids, which plays a significant role in enhancing these properties, is hard to achieve, thus limiting the performance of the heat transfer fluids in practical applications. The present paper attempts to highlight various approaches used by researchers in improving and evaluating the stability of thermal fluids and thoroughly explores various factors that contribute to the enhancement of the thermo-physical properties of mono, hybrid, and green nanofluids. There are various methods to maintain the stability of nanofluids, but this paper particularly focuses on the sonication process, pH modification, and the use of surfactant. In addition, the common techniques to evaluate the stability of nanofluids are undertaken by using visual observation, TEM, FESEM, XRD, zeta potential analysis, and UV-Vis spectroscopy. Prior investigations revealed that the type of nanoparticle, particle volume concentration, size and shape of particles, temperature, and base fluids highly influence the thermo-physical properties of nanofluids. In conclusion, this paper summarized the findings and strategies to enhance the stability and factors affecting the thermal conductivity and dynamic viscosity of mono and hybrid of nanofluids towards green nanofluids.
    Matched MeSH terms: Hardness
  19. Hazwani Syaza Ahmad, Hanafi Ismail, Azura Abd Rashid
    Sains Malaysiana, 2015;44:835-842.
    Epoxidized natural rubber (ENR-50) has been used as a compatibilizer for natural rubber-recycled acrylonitrile-butadiene
    rubber (NR/NBRr) blends, vulcanized by sulfur. NBR gloves have excellent resistance to punctures, tear and many types
    of chemicals, while NR has good physical and mechanical properties. Incorporation of ENR-50 into the rubber blends
    has improved processability, stiffness, resilience and excellent oil resistance. NR/NBRr blends were prepared by two-roll
    mill with five different compositions with the ENR-50 content fixed at 10 phr. Cure characteristics, mechanical properties
    and morphology (SEM) studies were performed to determine the compatibility of NR/NBRr blends in the presence of ENR-
    50. The cure characteristics showed that NR/NBRr blends with the presence of ENR-50 have lower scorch time (ts2) and
    cure time (t90) than NR/NBRr blends without ENR-50. However, the NR/NBRr blends with ENR-50 exhibited higher minimum
    torque (ML
    ) and maximum torque (MH) which indicated difficult processability of the blends after compatibilization.
    Incorporation of ENR-50 into NR/NBRr blends improved all the tensile properties (tensile strength, tensile modulus and
    elongation at break) compared with NR/NBRr blends without ENR-50. The improvement in hardness upon compatibilization
    is due to an increase in crosslink density. Scanning electron microscopy (SEM images) of the fracture surfaces indicates
    that, with the addition of ENR-50 in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving
    the compatibility of NR/NBRr blends.
    Matched MeSH terms: Hardness
  20. Tan SS, Aminah A, Mohd Suria Affandi Y, Atil O, Babji AS
    Int J Food Sci Nutr, 2001 Jan;52(1):91-8.
    PMID: 11225183
    Physico-chemical and sensory characteristics of frankfurters prepared with three types of palm fats (PF60: 40, PF70: 30 and PF80: 20) and palm olein (POo) at 20 and 25% of fat levels were studied. Incorporation of different fats at 20 and 25% did not affect the cooking yields of the frankfurters. Frankfurters incorporated with 25% POo showed the highest value of water-holding capacity (WHC) among eight formulations. The frankfurters containing POo showed the least cooking loss compared to those with palm fats. The incorporation of different type and level of fats resulted in significant changes in the colour (lightness, redness, yellowness) of frankfurters. Texture profiles of both raw and cooked frankfurters were found to be altered by the blending of different type and level of fats. In raw frankfurters, hardness for frankfurters mixed with palm fats were significantly higher than the one with POo but greater values for cohesiveness was observed in raw frankfurters blended with POo. Lowest chewiness was demonstrated by frankfurters mixed with 20% POo. Grilling increased the hardness values of all frankfurters. Contrary to the raw counterparts, cooked frankfurter with POo was the hardest among all formulations. Cohesiveness and chewiness was also found to be significantly higher for cooked frankfurters mixed with POo. Raw frankfurters with fat content of 25% showed greater value in hardness than those of 20%. However, there were no significant differences (P > 0.05) observed for all the texture profile attributes in cooked frankfurters due to fat levels. In sensory evaluation, frankfurters prepared with POo were found to be most acceptable by consumer panels as they scored the highest for hardness rating, chicken flavour, oiliness and overall acceptance attributes.
    Matched MeSH terms: Hardness
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links