Displaying publications 1 - 20 of 54394 in total

Abstract:
Sort:
  1. Gómez Román R, Wang LF, Lee B, Halpin K, de Wit E, Broder CC, et al.
    mSphere, 2020 07 08;5(4).
    PMID: 32641430 DOI: 10.1128/mSphere.00602-20
    Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.
    Matched MeSH terms: Humans
  2. Jacob SA, Chong EY, Goh SL, Palanisamy UD
    Mhealth, 2021;7:29.
    PMID: 33898598 DOI: 10.21037/mhealth.2020.01.04
    Background: Deaf and hard-of-hearing (DHH) patients have trouble communicating with community pharmacists and accessing the healthcare system. This study explored the views on a proposed mobile health (mHealth) app in terms of design and features, that will be able to bridge the communication gap between community pharmacists and DHH patients.

    Methods: A community-based participatory research method was utilized. Two focus group discussions (FGDs) were conducted in Malaysian sign language (BIM) with a total of 10 DHH individuals. Respondents were recruited using purposive sampling. Video-recordings were transcribed and analyzed using a thematic approach.

    Results: Two themes emerged: (I) challenges and scepticism of the healthcare system; and (II) features of the mHealth app. Respondents expressed fears and concerns about accessing healthcare services, and stressed on the need for sign language interpreters. There were also concerns about data privacy and security. With regard to app features, the majority preferred videos instead of text to convey information about their disease and medication, due to their lower literacy levels.

    Conclusions: For an mHealth app to be effective, app designers must ensure the app is individualised according to the cultural and linguistic diversity of the target audience. Pharmacists should also educate patients on the potential benefits of the app in terms of assisting patients with their medicine-taking.

    Matched MeSH terms: Humans
  3. Forde BM, Phan MD, Gawthorne JA, Ashcroft MM, Stanton-Cook M, Sarkar S, et al.
    mBio, 2015 Nov 17;6(6):e01602-15.
    PMID: 26578678 DOI: 10.1128/mBio.01602-15
    Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located.

    IMPORTANCE: DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.

    Matched MeSH terms: Humans
  4. Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, et al.
    mBio, 2021 01 12;12(1).
    PMID: 33436435 DOI: 10.1128/mBio.02698-20
    Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
    Matched MeSH terms: Humans
  5. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, et al.
    mBio, 2017 10 24;8(5).
    PMID: 29066548 DOI: 10.1128/mBio.01558-17
    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
    Matched MeSH terms: Humans
  6. Zhang X, Li C, Zhou Y, Huang J, Yu T, Liu X, et al.
    iScience, 2020 Apr 24;23(4):101032.
    PMID: 32304863 DOI: 10.1016/j.isci.2020.101032
    Hanging Coffin is a unique and ancient burial custom that has been practiced in southern China, Southeast Asia, and near Oceania regions for more than 3,000 years. Here, we conducted mitochondrial whole-genome analyses of 41 human remains sampled from 13 Hanging Coffin sites in southern China and northern Thailand, which were dated between ∼2,500 and 660 years before present. We found that there were genetic connections between the Hanging Coffin people living in different geographic regions. Notably, the matrilineal genetic diversity of the Hanging Coffin people from southern China is much higher than those from northern Thailand, consistent with the hypothesized single origin of the Hanging Coffin custom in southern China about 3,600 years ago, followed by its dispersal in southern China through demic diffusion, whereas the major dispersal pattern in Southeast Asia is cultural assimilation in the past 2,000 years.
    Matched MeSH terms: Humans
  7. Niemann J, Gopalakrishnan S, Yamaguchi N, Ramos-Madrigal J, Wales N, Gilbert MTP, et al.
    iScience, 2021 Jan 22;24(1):101904.
    PMID: 33364590 DOI: 10.1016/j.isci.2020.101904
    The Japanese or Honshū wolf was one the most distinct gray wolf subspecies due to its small stature and endemicity to the islands of Honshū, Shikoku, and Kyūshū. Long revered as a guardian of farmers and travellers, it was persecuted from the 17th century following a rabies epidemic, which led to its extinction in the early 20th century. To better understand its evolutionary history, we sequenced the nuclear genome of a 19th century Honshū wolf specimen to an average depth of coverage of 3.7✕. We find Honshū wolves were closely related to a lineage of Siberian wolves that were previously believed to have gone extinct in the Late Pleistocene, thereby extending the survival of this ancient lineage until the early 20th century. We also detected significant gene flow between Japanese dogs and the Honshū wolf, corroborating previous reports on Honshū wolf dog interbreeding.
    Matched MeSH terms: Humans
  8. Tan JSH, Lee S, Hiew FL
    eNeurologicalSci, 2021 Mar;22:100321.
    PMID: 33553704 DOI: 10.1016/j.ensci.2021.100321
    Amyotrophic lateral sclerosis (ALS) is characterized by progressive onset motor deficits with heterogenous presentations ranging from dysarthria to foot drop. Approximately 20% of the patients present with focal bulbar symptoms, in which some may remain restricted to bulbar region (isolated bulbar palsy), and the remaining eventually spreads to involve other body regions (classical ALS). Without accompanying upper and lower motor neurons signs elsewhere, differential diagnoses for isolated bulbar symptoms are extensive, include ALS variants as well as potentially treatable mimics. Therefore, it is important to take heed on every possible aetiology that may disrupt the hypoglossal nucleus, nerve, or lingual muscle itself. Herein, we illustrated a rare presentation of Group A basilar invagination, which mimicked bulbar-onset ALS.
    Matched MeSH terms: Humans
  9. Mustafar F, Harvey MA, Khani A, Arató J, Rainer G
    eNeuro, 2018 07 11;5(4).
    PMID: 30073190 DOI: 10.1523/ENEURO.0167-18.2018
    Our understanding of the neurobiological underpinnings of learning and behavior relies on the use of invasive techniques, which necessitate the use of animal models. However, when different species learn the same task, to what degree are they actually producing the same behavior and engaging homologous neural circuitry? This question has received virtually no recent attention, even as the most powerful new methodologies for measuring and perturbing the nervous system have become increasingly dependent on the use of murine species. Here, we test humans, rats, monkeys, and an evolutionarily intermediate species, tree shrews, on a three alternative, forced choice, visual contrast discrimination task. As anticipated, learning rate, peak performance, and transfer across contrasts was lower in the rat compared to the other species. More interestingly, rats exhibited two major behavioral peculiarities: while monkeys and tree shrews based their choices largely on visual information, rats tended to base their choices on past reward history. Furthermore, as the task became more difficult, rats largely disengaged from the visual stimulus, reverting to innate spatial predispositions in order to collect rewards near chance probability. Our findings highlight the limitation of muridae as models for translational research, at least in the area of visually based decision making.
    Matched MeSH terms: Humans
  10. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, et al.
    Elife, 2020 09 02;9.
    PMID: 32876566 DOI: 10.7554/eLife.57869
    HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
    Matched MeSH terms: Humans
  11. Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, et al.
    Elife, 2020 02 18;9.
    PMID: 32066522 DOI: 10.7554/eLife.51546
    In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
    Matched MeSH terms: Humans
  12. Cook GM, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, et al.
    Elife, 2020 05 28;9.
    PMID: 32452761 DOI: 10.7554/eLife.54612
    Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.
    Matched MeSH terms: Humans
  13. Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al.
    Elife, 2020 09 29;9.
    PMID: 32990596 DOI: 10.7554/eLife.57761
    New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favorable response toward immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.
    Matched MeSH terms: Humans
  14. Sundaram A, Plumb R, Appathurai S, Mariappan M
    Elife, 2017 05 15;6.
    PMID: 28504640 DOI: 10.7554/eLife.27187
    IRE1α is an endoplasmic reticulum (ER) localized endonuclease activated by misfolded proteins in the ER. Previously, we demonstrated that IRE1α forms a complex with the Sec61 translocon, to which its substrate XBP1u mRNA is recruited for cleavage during ER stress (Plumb et al., 2015). Here, we probe IRE1α complexes in cells with blue native PAGE immunoblotting. We find that IRE1α forms a hetero-oligomeric complex with the Sec61 translocon that is activated upon ER stress with little change in the complex. In addition, IRE1α oligomerization, activation, and inactivation during ER stress are regulated by Sec61. Loss of the IRE1α-Sec61 translocon interaction as well as severe ER stress conditions causes IRE1α to form higher-order oligomers that exhibit continuous activation and extended cleavage of XBP1u mRNA. Thus, we propose that the Sec61-IRE1α complex defines the extent of IRE1α activity and may determine cell fate decisions during ER stress conditions.
    Matched MeSH terms: Humans
  15. Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al.
    Elife, 2019 10 22;8.
    PMID: 31638575 DOI: 10.7554/eLife.47602
    Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
    Matched MeSH terms: Humans
  16. Tamana S, Xenophontos M, Minaidou A, Stephanou C, Harteveld CL, Bento C, et al.
    Elife, 2022 Dec 01;11.
    PMID: 36453528 DOI: 10.7554/eLife.79713
    Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework.
    Matched MeSH terms: Humans
  17. Gonçalves BP, Hall M, Jassat W, Balan V, Murthy S, Kartsonaki C, et al.
    Elife, 2022 Oct 05;11.
    PMID: 36197074 DOI: 10.7554/eLife.80556
    BACKGROUND: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings.

    METHODS: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries.

    RESULTS: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population.

    CONCLUSIONS: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome.

    FUNDING: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.

    Matched MeSH terms: Humans
  18. Morales Berstein F, McCartney DL, Lu AT, Tsilidis KK, Bouras E, Haycock P, et al.
    Elife, 2022 Mar 29;11.
    PMID: 35346416 DOI: 10.7554/eLife.75374
    BACKGROUND: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker.

    METHODS: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach.

    RESULTS: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers.

    CONCLUSIONS: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results.

    FUNDING: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.

    Matched MeSH terms: Humans
  19. Smith TM, Arora M, Austin C, Nunes Ávila J, Duval M, Lim TT, et al.
    Elife, 2024 Mar 08;12.
    PMID: 38457350 DOI: 10.7554/eLife.90217
    Studies of climate variation commonly rely on chemical and isotopic changes recorded in sequentially produced growth layers, such as in corals, shells, and tree rings, as well as in accretionary deposits-ice and sediment cores, and speleothems. Oxygen isotopic compositions (δ18O) of tooth enamel are a direct method of reconstructing environmental variation experienced by an individual animal. Here, we utilize long-forming orangutan dentitions (Pongo spp.) to probe recent and ancient rainfall trends on a weekly basis over ~3-11 years per individual. We first demonstrate the lack of any consistent isotopic enrichment effect during exclusive nursing, supporting the use of primate first molar teeth as environmental proxies. Comparisons of δ18O values (n=2016) in twelve molars from six modern Bornean and Sumatran orangutans reveal a high degree of overlap, with more consistent annual and bimodal rainfall patterns in the Sumatran individuals. Comparisons with fossil orangutan δ18O values (n=955 measurements from six molars) reveal similarities between modern and late Pleistocene fossil Sumatran individuals, but differences between modern and late Pleistocene/early Holocene Bornean orangutans. These suggest drier and more open environments with reduced monsoon intensity during this earlier period in northern Borneo, consistent with other Niah Caves studies and long-term speleothem δ18O records in the broader region. This approach can be extended to test hypotheses about the paleoenvironments that early humans encountered in southeast Asia.
    Matched MeSH terms: Humans
  20. NCD Risk Factor Collaboration (NCD-RisC)
    Elife, 2021 Mar 09;10.
    PMID: 33685583 DOI: 10.7554/eLife.60060
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
    Matched MeSH terms: Humans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links