Displaying publications 1 - 20 of 148 in total

Abstract:
Sort:
  1. Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, et al.
    Oral Dis, 2023 Nov;29(8):3583-3598.
    PMID: 35839150 DOI: 10.1111/odi.14314
    BACKGROUND: Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin.

    MATERIALS AND METHODS: A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis.

    RESULTS: Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment.

    CONCLUSIONS: Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.

    Matched MeSH terms: Hydrogels
  2. Abdullah MF, Azfaralariff A, Lazim AM
    J Biomater Sci Polym Ed, 2018 10;29(14):1745-1763.
    PMID: 29989528 DOI: 10.1080/09205063.2018.1489023
    This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.
    Matched MeSH terms: Hydrogels/chemistry*
  3. Ahmad N, Amin MC, Mahali SM, Ismail I, Chuang VT
    Mol Pharm, 2014 Nov 3;11(11):4130-42.
    PMID: 25252107 DOI: 10.1021/mp5003015
    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
    Matched MeSH terms: Hydrogels/chemistry*
  4. Ahmad, M.B., Hashim, K.B., Mohd Yazid, N., Zainuddin, N.
    MyJurnal
    In this work, hydrogels were prepared from carboxymethyl cellulose (CMC) and 1-vinyl-2-pyrrolidone(VP) by Electron Beam irradiation in the presence of N,N'-methylenebisacrylamide (BIS) as a crosslinkingagent. The parameters studied include stirring time and percentage of crosslinking agent. Hydrogels werecharacterized using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy(SEM). VP and BIS were found be effective as reinforcement materials to improve the properties ofCMC. Meanwhile, the optimum conditions were 5% BIS and 3 hours of stirring time. The gel fractionincreased when irradiation dose was increased. FTIR confirmed the crosslinking reaction between CMCand VP after the irradiation process by using BIS as the crosslinking agent. TGA thermograms showedchanges in the thermal properties of CMC-VP hydrogels in the presence of different amounts of BIS.
    Matched MeSH terms: Hydrogels
  5. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Hydrogels/chemistry*
  6. Al-Bayaty F, Abdulla MA
    PMID: 22666291 DOI: 10.1155/2012/468764
    Background and Purpose. This study aimed to evaluate the wound healing activities of Aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats. Experimental Approach. Forty-eight Sprague Dawley rats were chosen for this study, divided into 4 groups. Diabetes was induced. Two-centimeter-diameter full-thickness skin excision wounds were created. Animals were topically treated twice daily. Groups 1, the diabetic control group, were treated with 0.2 mL of sterile distilled water. Group 2 served as a reference standard were treated with 0.2 mL of Intrasite gel. Groups 3 and 4 were treated with 0.2 mL of Aftamed and 0.2 mL of chlorine dioxide gels respectively. Granulation tissue was excised on the 10th day and processed for histological and biochemical analysis. The glutathione peroxidase ,superoxide dismutase activities and the malondialdehyde (MDA) levels were determined. Results. Aftamed-treated wounds exhibited significant increases in hydroxyproline, cellular proliferation, the number of blood vessels, and the level of collagen synthesis. Aftamed induced an increase in the free radical-scavenging enzyme activity and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in the MDA level. Conclusions. This study showed that Aftamed gel is able to significantly accelerate the process of wound healing in diabetic rats.
    Matched MeSH terms: Hydrogels
  7. Ali NH, Amin MCIM, Ng SF
    J Biomater Sci Polym Ed, 2019 06;30(8):629-645.
    PMID: 30896336 DOI: 10.1080/09205063.2019.1595892
    Biofilms comprise bacteria attached to wound surfaces and are major contributors to non-healing wounds. It was found that the increased resistance of biofilms to antibiotics allows wound infections to persist chronically in spite of antibiotic therapy. In this study, the reduced form of graphene oxide (rGO) was explored as plausible antibiofilm agents. The rGO was synthesized via reducing the functional groups of GO. Then, rGO were characterized using zetasizer, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and FESEM. The rGO were then formulated into sodium carboxymethyl cellulose (NaCMC) hydrogels to form rGO hydrogel and tested for antibiofilm activities in vitro using XTT test, and in vivo biofilm formation assay using nematodes C. elegans. Reduced GO hydrogel was successfully formed by reducing the functional groups of GO, and a reduction of up to 95% of functional groups was confirmed with X-ray photoelectron spectroscopy analysis. XTT tests confirmed that rGO hydrogels reduced biofilm formation by S. aureus (81-84%) and P. aeruginosa (50-62%). Fluorescence intensity also confirmed that rGO hydrogel can inhibit biofilm bacteria in C. elegans experiments. This study implied that rGO hydrogel is an effective antibiofilm agent for infected wounds.
    Matched MeSH terms: Hydrogels/pharmacology; Hydrogels/chemistry*
  8. Ali Salim KM, Abd Jalil A, Radzi Z, Ismail SM, Czernuszka JT, Rahman MT
    Materials (Basel), 2020 Oct 06;13(19).
    PMID: 33036128 DOI: 10.3390/ma13194436
    OBJECTIVE: Reconstruction of oral and facial defects often necessitate replacement of missing soft tissue. The purpose of tissue expanders is to grow healthy supplementary tissue under a controlled force. This study investigates the inflammatory responses associated with the force generated from the use of anisotropic hydrogel tissue expanders.

    METHODS: Sprague Dawley rats (n = 7, body weight = 300 g ± 50 g) were grouped randomly into two groups-control (n = 3) and expanded (n = 4). Anisotropic hydrogel tissue expanders were inserted into the frontal maxillofacial region of the rats in the expanded group. The rats were sacrificed, and skin samples were harvested, fixed in formalin, and embedded in paraffin wax for histological investigation. Hematoxylin and eosin staining was performed to detect histological changes between the two groups and to investigate the inflammatory response in the expanded samples. Three inflammatory markers, namely interleukin (IL)-1α, IL-6, and tumor necrosis factor-α (TNF-α), were analyzed by immunohistochemistry.

    RESULT: IL-1-α expression was only observed in the expanded tissue samples compared to the controls. In contrast, there was no significant difference in IL-6, and TNF-α production. Histological analysis showed the absence of inflammatory response in expanded tissues, and a negative non-significant correlation (Spearman's correlation coefficient) between IL-1-α immune-positive cells and the inflammatory cells (r = -0.500). In conclusion, tissues that are expanded and stabilized using an anisotropic self-inflating hydrogel tissue expander might be useful for tissue replacement and engraftment as the expanded tissue does not show any sign of inflammatory responses. Detection of IL-1-α in the expanded tissues warrants further investigation for its involvement without any visible inflammatory response.

    Matched MeSH terms: Hydrogels
  9. Amin MC, Ahmad N, Pandey M, Abeer MM, Mohamad N
    Expert Opin Drug Deliv, 2015 Jul;12(7):1149-61.
    PMID: 25547588 DOI: 10.1517/17425247.2015.997707
    Supramolecular hydrogels, formed by noncovalent crosslinking of polymeric chains in water, constitute an interesting class of materials that can be developed specifically for drug delivery and biomedical applications. The biocompatibility, stimuli responsiveness to various external factors, and powerful functionalization capacity of these polymeric networks make them attractive candidates for novel advanced dosage form design.
    Matched MeSH terms: Hydrogels*
  10. Amin ZA, Ali HM, Alshawsh MA, Darvish PH, Abdulla MA
    PMID: 26557855 DOI: 10.1155/2015/317693
    Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson's trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.
    Matched MeSH terms: Hydrogels
  11. Aminu N, Chan SY, Yam MF, Toh SM
    Int J Pharm, 2019 Oct 30;570:118659.
    PMID: 31493495 DOI: 10.1016/j.ijpharm.2019.118659
    This study aimed to develop a dual action, namely anti-inflammatory and antimicrobial, nanogels (NG) for the treatment of periodontitis using triclosan (TCS) and flurbiprofen (FLB). Triclosan, an antimicrobial drug, was prepared as nanoparticles (NPs) using poly-ε-caprolactone (PCL), while flurbiprofen, an anti-inflammatory drug, was directly loaded in a chitosan (CS) based hydrogel. The entwinement of both NPs and hydrogel loaded systems resulted in the NG. The characterisation data confirmed that the developed formulation consists of nanosized spherical structures and displays pH-dependent swelling/erosion and temperature-responsiveness. Besides, the NG exhibited adequate bioadhesiveness using the chicken pouch model and displayed antibacterial activity through the agar plate method. An in-vivo study of the NG on experimental periodontitis (EP) rats confirmed the dual antibacterial and anti-inflammatory effects which revealed an excellent therapeutic outcome. In conclusion, a dual action NG was successfully developed and proved to have superior therapeutic effects in comparison to physical mixtures of the individual drugs.
    Matched MeSH terms: Hydrogels/chemistry
  12. Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M
    Adv Colloid Interface Sci, 2021 Feb;288:102316.
    PMID: 33387892 DOI: 10.1016/j.cis.2020.102316
    The present article evaluates the composition and synthesis of hydrogel beads. Hydrogels, owing to their known biocompatibility, are widely used in drug delivery as a host (or drug carrier). Hydrogels, owing to their physical, chemical and biological properties, are popular in many aspects. Hydrogels are crosslinked-hydrophilic polymers and commercialized/synthesized in both natural and synthetic forms. These polymers are compatible with human tissues, therefore can be potentially used for biomedical treatments. Hydrogels in drug delivery offer several points of interest such as sustainability, and sensitivity without any side-effects as compared to traditional methods in this field. Drugs can encapsulate and release continuously into the targets when hydrogels are activated/modified magnetically or by fluorescent materials. It is crucial to develop new crosslinked polymers in terms of "biocompatibility" and "biodegradability" for novel drug delivery platforms. In the event that the accomplishments of the past can be used into the longer terms, it is exceedingly likely that hydrogels with a wide cluster of alluring properties can be synthesized. The current review, offers an updated summary of latest developments in the nanomedicines field as well as nanobased drug delivery systems over broad study of the discovery/ application of nanomaterials in improving both the efficacy of drugs and targeted delivery of them. The challenges/opportunities of nanomedicine in drug delivery also discussed. SCOPE OF THE RESEARCH: Although several reviews have been published in the field of hydrogels, however many of them have just centralized on the general overviews in terms of "synthesis" and "properties". The utilization of hydrogels and hydrogel-based composites in vital applications have been achieved a great interest. In this review, our aim is to recap of the key points in the field of hydrogels such as; a) hydrogel nanocomposites, b) magnetic beads, c) biomedical applications, and d) drug delivery. In the same vein, these outlines will be expanded with emphasizing on the boon of magnetic beads and recent developments in this area.
    Matched MeSH terms: Hydrogels*
  13. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
    Matched MeSH terms: Hydrogels*
  14. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/pharmacology; Hydrogels/chemistry*
  15. Ayub NM, Kassim NFA, Sabar S, Webb CE, Xiang KZ, Hashim NA
    Int J Biol Macromol, 2023 Jan 01;224:1460-1470.
    PMID: 36328267 DOI: 10.1016/j.ijbiomac.2022.10.233
    The effective control of Aedes mosquitoes using traditional control agents is increasingly challenging due to the presence of insecticide resistance in many populations of key mosquito vectors. An alternative strategy to insecticides is the use of toxic sugar baits, however it is limited due to short-term efficacy. Alginate-Gelatin hydrogel beads (AGHBs) may be an effective alternative by providing longer periods of mosquito attraction and control, especially of key vectors of dengue viruses such as Aedes aegypti and Aedes albopictus. Sodium alginate (ALG) and gelatin (GLN) are natural polymers, which can be a potential candidate to develop the AGHBs baits due to their biodegradability and environmental safety. Here we provide an assessment of the preparation of AGHBs optimized by varying the concentrations of ALG, GLN, and its cross-linking time (TIME). Fourier transform infrared spectroscopy (FTIR) analysis results in the determination of liquid bait loaded in the AGHBs. The evaluation of AGHBs' effectiveness as the potential baiting tool based on the mortality rate of mosquitoes after the bait consumption. The 100 % percent mortality of Aedes mosquitoes was obtained within 72 h of bait consumption. The field evaluation also justifies the applicability of AGHBs for outdoor applications. We conclude that the AGHBs are applicable as a baiting tool in carrying liquid bait in achieving mosquito mortality.
    Matched MeSH terms: Hydrogels
  16. Bakar AJA, Azam NSM, Sevakumaran V, Ismail WIW, Razali MH, Razak SIA, et al.
    Int J Biol Macromol, 2023 Aug 01;245:125494.
    PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494
    The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
    Matched MeSH terms: Hydrogels/pharmacology
  17. Bashir S, Teo YY, Ramesh S, Ramesh K, Mushtaq MW
    Int J Biol Macromol, 2018 Oct 01;117:454-466.
    PMID: 29807081 DOI: 10.1016/j.ijbiomac.2018.05.182
    Novel pH sensitive N-succinyl chitosan-g-poly (acrylic acid) hydrogels were synthesized through free radical mechanism. Rheometer was used to observe the mechanical strength of the hydrogels. In vitro degradation was conducted in SIF (pH 7.4). The effect of concentration of monomers, initiator, and crosslinking agent and pH and ionic strength of NaCl, CaCl2, and AlCl3 on swelling of the hydrogels was observed. The results showed that equilibrium swelling ratio was highly influenced by concentration of monomers, initiator, and crosslinking agent concentration, and pH and salt solutions of NaCl, CaCl2, and AlCl3. The swelling kinetics revealed that swelling followed non-Fickian anomalous transport. Furthermore, theophylline loading (DL %) and encapsulation efficiency (EE %) of the hydrogels was in the range of 15.5 ± 0.15-22.8 ± 0.06% and 62 ± 0.15-91 ± 0.26%, respectively. The release of theophylline in physiological mediums was strongly influenced by the pH. The theophylline release was in the range of 51 ± 0.20-92 ± 0.12% in SIF and 7.4 ± 0.02-14.9 ± 0.03% in SGF (pH 1.2), respectively. The release data fitted well to Korsmeyer-Peppas model. The chemical activity of the theophylline suggested that drug maintained its chemical activity after release in vitro. The results suggest that synthesized hydrogels are excellent drug carriers.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/chemistry*
  18. Bashir S, Teo YY, Naeem S, Ramesh S, Ramesh K
    PLoS One, 2017;12(7):e0179250.
    PMID: 28678803 DOI: 10.1371/journal.pone.0179250
    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug delivery carriers.
    Matched MeSH terms: Hydrogels/chemistry*
  19. Basri M, Samsudin S, Ahmad MB, Razak CN, Salleh AB
    Appl Biochem Biotechnol, 1999 Sep;81(3):205-17.
    PMID: 15304777
    Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl- 2-pyrrolidone-co-2-hydroxyethyl methacrylate) (poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90:10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50:50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.
    Matched MeSH terms: Hydrogels
  20. Bin Sahadan MY, Tong WY, Tan WN, Leong CR, Bin Misri MN, Chan M, et al.
    Exp Eye Res, 2019 01;178:10-14.
    PMID: 30243569 DOI: 10.1016/j.exer.2018.09.011
    Microbial keratitis is the infection caused by pathogenic microorganisms that commonly occurs among the contact lens users. Various antimicrobial compounds were coated on contact lenses to kill keratitis causing microorganisms, however these compounds caused several adverse side effects. Hence, the aim of this study is to develop a silicone hydrogel contact lens coated with phomopsidione nanoparticle that inhibit keratitis causing clinical isolates. Phomopsidione nanoparticles were synthesized using polyvinyl alcohol as encapsulant. The nanoparticles showed an average size of 77.45 nm, with neutral surface charge. Two drug release patterns were observed in the drug release profile, which are the initial slow release phase with extended drug release (release rate 46.65 μg/h), and the burst release phase observed on Day 2 (release rate 2224.49 μg/h). This well-regulated drug delivery system enables the control of drug release to meet the therapeutic requirements. On agar diffusion assay, 3 out of 5 test microorganisms were inhibited by phomopsidione nanoparticle coated contact lenses, including two Gram negative bacteria. Besides, all test microorganisms showed at least 99% of growth reduction, with the treatment of the contact lens model. The drug loaded onto the nanoparticles is sufficient to prevent the bacterial growth. In conclusion, this study provides an effective alternative to combat keratitis-causing microorganisms among contact wearers.
    Matched MeSH terms: Hydrogels
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links