Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Hamidon TS, Idris NN, Adnan R, Haafiz MKM, Zahari A, Hussin MH
    Int J Biol Macromol, 2024 Mar;262(Pt 2):130239.
    PMID: 38367788 DOI: 10.1016/j.ijbiomac.2024.130239
    Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.
    Matched MeSH terms: Hydrogels/chemistry
  2. Nyoo Putro J, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, Wijaya CJ, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128502.
    PMID: 38040139 DOI: 10.1016/j.ijbiomac.2023.128502
    As a natural raw material to replace synthetic chemicals, cellulose and its derivatives are the most popular choices in the pharmaceutical industry. For drug delivery applications, cellulose is usually used as a cellulose nanocrystal (CNC). CNC-based hydrogels are widely utilized for drug delivery because drug molecules can be encapsulated in their pore-like structures. This study aims to develop CNC hydrogels for the delivery of doripenem antibiotics. CNC was obtained from jackfruit peel extraction, and alginate was used as a network polymer to produce hydrogels. Ionotropic gelation was used in the synthesis of CNC-alginate hydrogel composites. The maximum adsorption of doripenem by CNC was 65.7 mg/g, while the maximum adsorption by CNC-alginate was 98.4 mg/g. One of the most challenging aspects of drug delivery is predicting drug release from a solid matrix using simple and complex mathematical equations. The sigmoidal equation could represent the doripenem release from CNC, while the Ritger-Peppas equation could describe the doripenem release from CNC-Alginate. The biocompatibility testing of CNC and CNC-alginate against a 7F2 cell line indicates that both materials were non-toxic.
    Matched MeSH terms: Hydrogels/chemistry
  3. Bokhari N, Ali A, Yasmeen A, Khalid H, Safi SZ, Sharif F
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127284.
    PMID: 37806415 DOI: 10.1016/j.ijbiomac.2023.127284
    Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.
    Matched MeSH terms: Hydrogels/chemistry
  4. Fu J, Yap JX, Leo CP, Chang CK
    Int J Biol Macromol, 2023 Apr 15;234:123642.
    PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642
    Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
    Matched MeSH terms: Hydrogels/chemistry
  5. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
    Matched MeSH terms: Hydrogels/chemistry
  6. Khan MUA, Haider S, Raza MA, Shah SA, Razak SIA, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Dec 01;192:820-831.
    PMID: 34648803 DOI: 10.1016/j.ijbiomac.2021.10.033
    Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.
    Matched MeSH terms: Hydrogels/chemistry
  7. Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, et al.
    Molecules, 2021 Sep 30;26(19).
    PMID: 34641480 DOI: 10.3390/molecules26195937
    The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
    Matched MeSH terms: Hydrogels/chemistry
  8. Wong LC, Leh CP, Goh CF
    Carbohydr Polym, 2021 Jul 15;264:118036.
    PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036
    Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
    Matched MeSH terms: Hydrogels/chemistry*
  9. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
    Matched MeSH terms: Hydrogels/chemistry*
  10. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Hydrogels/chemistry*
  11. Pushpamalar J, Sathasivam T, Gugler MC
    Methods Mol Biol, 2021;2211:171-182.
    PMID: 33336277 DOI: 10.1007/978-1-0716-0943-9_12
    Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.
    Matched MeSH terms: Hydrogels/chemistry*
  12. Makhsin SR, Goddard NJ, Gupta R, Gardner P, Scully PJ
    Anal Chem, 2020 11 17;92(22):14907-14914.
    PMID: 32378876 DOI: 10.1021/acs.analchem.0c00586
    The metal-clad leaky waveguide (MCLW) is an optical biosensor consisting of a metal layer and a low index waveguide layer on a glass substrate. This label-free sensor measures refractive index (RI) changes within the waveguide layer. This work shows the development and optimization of acrylate based-hydrogel as the waveguide layer formed from PEG diacrylate (PEGDA, Mn 700), PEG methyl ether acrylate (PEGMEA, Mn 480), and acrylate-PEG2000-NHS fabricated on a substrate coated with 9.5 nm of titanium. The acrylate-based hydrogel is a synthetic polymer, so properties such as optical transparency, porosity, and hydrogel functionalization by a well-controlled reactive group can be tailored for immobilization of the bioreceptor within the hydrogel matrix. The waveguide sensor demonstrated an equal response to solutions of identical RI containing small (glycerol) and large (bovine serum albumin; BSA) analyte molecules, indicating that the hydrogel waveguide film is highly porous to both sizes of molecule, thus potentially allowing penetration of a range of analytes within the porous matrix. The final optimized MCLW chip was formed from a total hydrogel concentration of 40% v/v of PEGMEA-PEGDA (Mn 700), functionalized with 2.5% v/v of acrylate-PEG2000-NHS. The sensor generated a single-moded waveguide signal with a RI sensitivity of 128.61 ± 0.15° RIU-1 and limit of detection obtained at 2.2 × 10-6 RIU with excellent signal-to-noise ratio for the glycerol detection. The sensor demonstrated RI detection by monitoring changes in the out-coupled angle resulting from successful binding of d-biotin to streptavidin immobilized on functionalized acrylate hydrogel, generating a binding signal of (12.379 ± 0.452) × 10-3°.
    Matched MeSH terms: Hydrogels/chemistry*
  13. Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, et al.
    Int J Biol Macromol, 2020 Nov 01;162:175-187.
    PMID: 32562726 DOI: 10.1016/j.ijbiomac.2020.06.133
    Inflammation is a key challenge in the treatment of chronic diseases. Spurred by topical advancement in polymer chemistry and drug delivery, hydrogels that release a drug in temporal, spatial and dosage controlled fashion have been trendy. This research focused on the fabrication of hydrogels with controlled drug release properties to control inflammation. Chitosan and polyvinyl pyrrolidone were used as base polymers and crosslinked with epichlorohydrin to form hydrogel films by solution casting technique. Prepared hydrogels were analyzed by swelling analysis in deionized water, buffer and electrolyte solutions and gel fraction. Functional groups confirmation and development of new covalent and hydrogen bonds, thermal stability (28.49%) and crystallinity were evaluated by FTIR, TGA and WAXRD, respectively. Rheological properties including gel strength and yield stress, elasticity (2309 MPa), porosity (75%) and hydrophilicity (73°) of prepared hydrogels were also evaluated. In vitro studies confirmed that prepared hydrogels have good biodegradability, excellent antimicrobial property and admirable cytotoxicity. Drug release profile (87.56% in 130 min) along with the drug encapsulation efficiency (84%) of prepared hydrogels was also studied. These results paved the path towards the development of hydrogels that can release the drugs with desired temporal patterns.
    Matched MeSH terms: Hydrogels/chemistry*
  14. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Hydrogels/chemistry
  15. Salleh KM, Zakaria S, Gan S, Baharin KW, Ibrahim NA, Zamzamin R
    Int J Biol Macromol, 2020 Apr 01;148:11-19.
    PMID: 31893531 DOI: 10.1016/j.ijbiomac.2019.12.240
    Dissolved oil palm empty fruit bunch cellulose (EFBC) and sodium carboxymethylcellulose (NaCMC) were chemically crosslinked with epichlorohydrin (ECH) to generate designated hydrogel. After swelling process in distilled water, the swollen hydrogel was frozen and freeze-dried to form cryogel. The swelling phenomenon of hydrogel during the absorption process gave substantial effects on thinning of crosslinked network wall, pore size and volume, steadiness of cryogel skeletal structure, and re-swelling of cryogel. The swelling effects on hydrogel were confirmed via microscopic study using variable pressure scanning electron microscope (VPSEM). From the retrieved VPSEM images, nano-thin crosslinked network wall of 24.31 ± 1.97 nm and interconnected pores were observed. As a result, the amount of water, the swelling degree, and the freeze-drying process indirectly affected the VPSEM images that indicated pore size and volume, formation of interconnected pores, and re-swelling of cryogel. This study determined the intertwined factors that affected both hydrogel and cryogel properties by investigating the swelling phenomenon and its ensuing effects.
    Matched MeSH terms: Hydrogels/chemistry*
  16. Hapipi NM, Mazlan SA, Ubaidillah U, Abdul Aziz SA, Ahmad Khairi MH, Nordin NA, et al.
    Int J Mol Sci, 2020 Mar 05;21(5).
    PMID: 32151055 DOI: 10.3390/ijms21051793
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
    Matched MeSH terms: Hydrogels/chemistry*
  17. Chan SJ, Niu W, Hayakawa K, Hamanaka G, Wang X, Cheah PS, et al.
    Stem Cells Transl Med, 2019 Dec;8(12):1242-1248.
    PMID: 31483567 DOI: 10.1002/sctm.19-0159
    Biomaterials provide novel platforms to deliver stem cell and growth factor therapies for central nervous system (CNS) repair. The majority of these approaches have focused on the promotion of neural progenitor cells and neurogenesis. However, it is now increasingly recognized that glial responses are critical for recovery in the entire neurovascular unit. In this study, we investigated the cellular effects of epidermal growth factor (EGF) containing hydrogels on primary astrocyte cultures. Both EGF alone and EGF-hydrogel equally promoted astrocyte proliferation, but EGF-hydrogels further enhanced astrocyte activation, as evidenced by a significantly elevated Glial fibrillary acidic protein (GFAP) gene expression. Thereafter, conditioned media from astrocytes activated by EGF-hydrogel protected neurons against injury and promoted synaptic plasticity after oxygen-glucose deprivation. Taken together, these findings suggest that EGF-hydrogels can shift astrocytes into neuro-supportive phenotypes. Consistent with this idea, quantitative-polymerase chain reaction (qPCR) demonstrated that EGF-hydrogels shifted astrocytes in part by downregulating potentially negative A1-like genes (Fbln5 and Rt1-S3) and upregulating potentially beneficial A2-like genes (Clcf1, Tgm1, and Ptgs2). Further studies are warranted to explore the idea of using biomaterials to modify astrocyte behavior and thus indirectly augment neuroprotection and neuroplasticity in the context of stem cell and growth factor therapies for the CNS. Stem Cells Translational Medicine 2019;8:1242&1248.
    Matched MeSH terms: Hydrogels/chemistry*
  18. Aminu N, Chan SY, Yam MF, Toh SM
    Int J Pharm, 2019 Oct 30;570:118659.
    PMID: 31493495 DOI: 10.1016/j.ijpharm.2019.118659
    This study aimed to develop a dual action, namely anti-inflammatory and antimicrobial, nanogels (NG) for the treatment of periodontitis using triclosan (TCS) and flurbiprofen (FLB). Triclosan, an antimicrobial drug, was prepared as nanoparticles (NPs) using poly-ε-caprolactone (PCL), while flurbiprofen, an anti-inflammatory drug, was directly loaded in a chitosan (CS) based hydrogel. The entwinement of both NPs and hydrogel loaded systems resulted in the NG. The characterisation data confirmed that the developed formulation consists of nanosized spherical structures and displays pH-dependent swelling/erosion and temperature-responsiveness. Besides, the NG exhibited adequate bioadhesiveness using the chicken pouch model and displayed antibacterial activity through the agar plate method. An in-vivo study of the NG on experimental periodontitis (EP) rats confirmed the dual antibacterial and anti-inflammatory effects which revealed an excellent therapeutic outcome. In conclusion, a dual action NG was successfully developed and proved to have superior therapeutic effects in comparison to physical mixtures of the individual drugs.
    Matched MeSH terms: Hydrogels/chemistry
  19. Chen XY, Butt AM, Mohd Amin MCI
    Mol Pharm, 2019 09 03;16(9):3853-3872.
    PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483
    The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
    Matched MeSH terms: Hydrogels/chemistry
  20. Sh Ahmed A, Taher M, Mandal UK, Jaffri JM, Susanti D, Mahmood S, et al.
    BMC Complement Altern Med, 2019 Aug 14;19(1):213.
    PMID: 31412845 DOI: 10.1186/s12906-019-2625-2
    BACKGROUND: Various extracts of Centella asiatica (Apiaceae) and its active constituent, asiaticoside, have been reported to possess wound healing property when assessed using various in vivo and in vitro models. In an attempt to develop a formulation with accelerated wound healing effect, the present study was performed to examine in vivo efficacy of asiaticoside-rich hydrogel formulation in rabbits.

    METHODS: Asiaticoside-rich fraction was prepared from C. asiatica aerial part and then incorporated into polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogel. The hydrogel was subjected to wound healing investigation using the in vivo incision model.

    RESULTS: The results obtained demonstrated that: i) the hydrogel formulation did not cause any signs of irritation on the rabbits' skin and; ii) enhanced wound healing 15% faster than the commercial cream and > 40% faster than the untreated wounds. The skin healing process was seen in all wounds marked by formation of a thick epithelial layer, keratin, and moderate formation of granulation tissues, fibroblasts and collagen with no fibrinoid necrosis detected.

    CONCLUSION: The asiaticoside-rich hydrogel developed using the freeze-thaw method was effective in accelerating wound healing in rabbits.

    Matched MeSH terms: Hydrogels/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links