Displaying publications 1 - 20 of 296 in total

Abstract:
Sort:
  1. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 08 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
    Matched MeSH terms: Hydrogen Peroxide
  2. Zeimaran E, Kadir MR, Nor HM, Kamarul T, Djordjevic I
    Bioorg Med Chem Lett, 2013 Dec 15;23(24):6616-9.
    PMID: 24215893 DOI: 10.1016/j.bmcl.2013.10.053
    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  3. Zakaria NNA, Okello EJ, Howes MJ, Birch-Machin MA, Bowman A
    Phytother Res, 2018 Jun;32(6):1064-1072.
    PMID: 29464849 DOI: 10.1002/ptr.6045
    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H2 O2 compared with control (H2 O2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p 
    Matched MeSH terms: Hydrogen Peroxide/analysis; Hydrogen Peroxide/metabolism*
  4. Zainudin MAM, Poojary MM, Jongberg S, Lund MN
    Food Chem, 2019 Nov 30;299:125132.
    PMID: 31299519 DOI: 10.1016/j.foodchem.2019.125132
    Protein oxidation of beef patties stored in high oxygen modified atmosphere packaging for 9 days was investigated. Meat was either stored in the dark, under light, or in the dark with addition of FeCl2/H2O2/myoglobin (forced oxidation). SDS-PAGE analysis showed high degree of protein polymerization for meat exposed to light, compared to the other samples. Light exposure induced reducible (disulfide) and non-reducible cross-links, while mainly disulfides were formed in meat stored in the dark. Light exposure was responsible for 58% loss of free thiols (Cys residues). No significant loss of other amino acid residues was observed and none of the most common oxidation products of tryptophan, tyrosine, and phenylalanine were detected. Intrinsic fluorescence measurements of tryptophan showed 27% loss in samples exposed to light, which was ascribed to loss of protein solubility via protein polymerization rather than tryptophan oxidation. Protein carbonyls were mainly detected in forced oxidized samples at Day 0.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  5. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  6. Zainuddin A, Makpol S, Chua KH, Abdul Rahim N, Yusof YA, Ngah WZ
    Med J Malaysia, 2008 Jul;63 Suppl A:73-4.
    PMID: 19024990
    Validation of housekeeping gene is important for accurate quantitation of RNA in real time RT-PCR technique. The purpose of this study was to determine the validity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a housekeeping gene for quantitative real time RT-PCR assessment in human skin fibroblast senescent model. The cells were divided into different treatment groups; young (passage 4), senescent (passage 30), treatment with H2O2 and treatment with A-tocotrienol prior to H2O2 treatment. Our results showed that the expression level of GAPDH was constant with different treatment groups. Therefore, we concluded that GAPDH was suitable to be used as housekeeping gene in human skin fibroblast senescent model.
    Matched MeSH terms: Hydrogen Peroxide
  7. Zaidel DN, Arnous A, Holck J, Meyer AS
    J Agric Food Chem, 2011 Nov 9;59(21):11598-607.
    PMID: 21954887 DOI: 10.1021/jf203138u
    Ferulic acid (FA) groups esterified to the arabinan side chains of pectic polysaccharides can be oxidatively cross-linked in vitro by horseradish peroxidase (HRP) catalysis in the presence of hydrogen peroxide (H(2)O(2)) to form ferulic acid dehydrodimers (diFAs). The present work investigated whether the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased as a result of the enzymatic oxidation treatment with HRP and H(2)O(2). At equimolar levels of FA (0.0025-0.05 mM) in the arabinan samples, the initial rates of the HRP-catalyzed cross-linking of the longer chain arabinans were slower than those of the shorter chain arabinans. The lower initial rates may be the result of the slower movement of larger molecules coupled with steric phenomena, making the required initial reaction of two FAs on longer chain arabinans slower than on shorter arabinans.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  8. Yusof EM, Abdullah SA, Mohamed NH
    J Conserv Dent, 2021 02 10;23(5):473-478.
    PMID: 33911356 DOI: 10.4103/JCD.JCD_509_20
    Objective: The objective of this study was to compare the effects of light and laser activation of in-office tooth bleaching systems on enamel microhardness and surface roughness.

    Materials and Methods: Twenty-five enamel slabs were divided into three treatment groups: light-activated bleaching, laser-activated bleaching, and control. The baseline data were recorded for enamel microhardness (Vickers microhardness [VMH]) and surface roughness (Roughness average, Ra). The specimens were cured for 10 min upon hydrogen peroxide application for the light-activated bleaching group and activated with a laser source, 8 cycles, 10 s per cycle for the laser-activated group. The changes in VMH and Ra at days 1, 7, and 28 were evaluated. Kruskal-Wallis, Friedman, Wilcoxon, and Mann-Whitney tests were used to analyze both VMH and Ra between the treatment groups at different time intervals.

    Results: There were a significant reduction in VMH values and significant differences between days 1, 7, and 28 against the baseline in the light-activated bleaching group (P = 0.001). The Ra values revealed significant differences in both light- (P = 0.001) and laser-activated (P = 0.033) groups.

    Conclusion: Light activation of a bleaching agent caused a reduction in enamel microhardness and an increase in surface roughness when compared to laser activation.

    Matched MeSH terms: Hydrogen Peroxide
  9. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  10. Yong YK, Tan JJ, Teh SS, Mah SH, Ee GC, Chiong HS, et al.
    PMID: 23533485 DOI: 10.1155/2013/462751
    Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100  μ g/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography-mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.
    Matched MeSH terms: Hydrogen Peroxide
  11. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2017 Nov;244(Pt 1):941-948.
    PMID: 28847084 DOI: 10.1016/j.biortech.2017.08.043
    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
    Matched MeSH terms: Hydrogen Peroxide
  12. Yida Z, Imam MU, Ismail M
    PMID: 25475744 DOI: 10.1186/1472-6882-14-468
    Edible birds' nest (EBN) is reported to be antioxidant-rich. However, the fate of its antioxidants after oral consumption is not yet reported. To explore this, we hypothesized that EBN antioxidants are released from their matrix when subjected to in vitro simulated gastrointestinal digestion.
    Matched MeSH terms: Hydrogen Peroxide
  13. Yew GY, Chew KW, Malek MA, Ho YC, Chen WH, Ling TC, et al.
    Biotechnol Biofuels, 2019;12:252.
    PMID: 31666807 DOI: 10.1186/s13068-019-1591-8
    Background: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution.

    Result: Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard.

    Conclusion: The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.

    Matched MeSH terms: Hydrogen Peroxide
  14. Yeap SK, Abu N, Akthar N, Ho WY, Ky H, Tan SW, et al.
    Integr Cancer Ther, 2017 09;16(3):373-384.
    PMID: 27458249 DOI: 10.1177/1534735416660383
    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H2O2-induced cell death is via neutralization of reactive oxygen species.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  15. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal Chem, 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  16. Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, et al.
    Amino Acids, 2024 Feb 03;56(1):6.
    PMID: 38310167 DOI: 10.1007/s00726-023-03360-8
    Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  17. Yap CL, Gan S, Ng HK
    Chemosphere, 2011 Jun;83(11):1414-30.
    PMID: 21316731 DOI: 10.1016/j.chemosphere.2011.01.026
    This paper aims to review the applications of Fenton based treatments specifically for polycyclic aromatic hydrocarbons-contaminated soils. An overview of the background and principles of Fenton treatment catalysed by both homogenous (conventional and modified Fenton) and heterogeneous (Fenton-like) catalysts is firstly presented. Laboratory and field soil remediation studies are then discussed in terms of efficiency, kinetics and associated factors. Four main scopes of integrated Fenton treatments, i.e. physical-Fenton, biological-Fenton, electro-Fenton and photo-Fenton are also reviewed in this paper. For each of these integrated remediation technologies, the theoretical background and mechanisms are detailed alongside with achievable removal efficiencies for polycyclic aromatic hydrocarbons in contaminated soils compared to sole Fenton treatment. Finally, the environmental impacts of Fenton based soil treatments are documented and discussed.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  18. Yap CL, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2015 Jan;22(1):329-42.
    PMID: 25065478 DOI: 10.1007/s11356-014-3199-7
    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  19. Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, et al.
    J Environ Manage, 2023 Oct 15;344:118718.
    PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718
    Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
    Matched MeSH terms: Hydrogen Peroxide
  20. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

    Matched MeSH terms: Hydrogen Peroxide/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links