Displaying publications 1 - 20 of 296 in total

Abstract:
Sort:
  1. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Hydrogen Peroxide/antagonists & inhibitors
  2. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  3. Li QZ, Xiong C, Wong WC, Zhou LW
    Int J Biol Macromol, 2024 Mar;260(Pt 2):129528.
    PMID: 38246471 DOI: 10.1016/j.ijbiomac.2024.129528
    Ganoderma is a well-known medicinal macrofungal genus, of which several species have been thoroughly studied from the medicinal perspective, but most species are rarely involved in. In this study, we focus on the polysaccharides extracted from Ganoderma boninense and their antioxidant activity. Ganoderma boninense is a serious pathogen of oil palms that are cultivated commercially in Southeast Asia. Response surface methodology was conducted to optimize the liquid medium composition, and the mycelia biomass reached 7.063 g/L, that is, 1.4-fold compared with the seed medium. The crude and purified polysaccharides extracted from the fermentation broth showed well 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging abilities, and the scavenging abilities of purified polysaccharides reached 94.47 % and 99.88 %, respectively. Six fractions of polysaccharides were extracted and purified from fruiting bodies, mycelia and fermentation broth separately with the elution buffers of distilled water and 0.1 M NaCl solution. Generally, the polysaccharides from fruiting bodies showed stronger protective effect on H2O2-induced HepG2 cell oxidative damage than other fractions. A total of five to seven monosaccharides were identified in the six fractions of polysaccharides. The correlation analysis revealed that the content of fucose was significantly correlated with the antioxidant activity of polysaccharides, while xylose showed negative correlation results. In summary, the polysaccharides from G. boninense have a potential to be used as natural antioxidants.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  4. Hafizah AH, Zaiton Z, Zulkhairi A, Mohd Ilham A, Nor Anita MM, Zaleha AM
    J Zhejiang Univ Sci B, 2010 May;11(5):357-65.
    PMID: 20443214 DOI: 10.1631/jzus.B0900397
    Endothelial cell death due to increased reactive oxygen species (ROS) may contribute to the initial endothelial injury, which promotes atherosclerotic lesion formation. Piper sarmentosum (PS), a natural product, has been shown to have an antioxidant property, which is hypothesized to inhibit production of ROS and prevent cell injury. Thus, the present study was designed to determine the effects of PS on the hydrogen peroxide (H(2)O(2))-induced oxidative cell damage in cultured human umbilical vein endothelial cells (HUVECs). In this experiment, HUVECs were obtained by collagenase perfusion of the large vein in the umbilical cord and cultured in medium M200 supplemented with low serum growth supplementation (LSGS). HUVECs were treated with various concentrations of H(2)O(2) (0-1000 micromol/L) and it was observed that 180 micromol/L H(2)O(2) reduced cell viability by 50% as denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Using the above concentration as the positive control, the H(2)O(2)-induced HUVECs were concomitantly treated with various concentrations (100, 150, 250 and 300 microg/ml) of three different extracts (aqueous, methanol and hexane) of PS. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) levels showed a significant increase (P<0.05) in HUVECs compared to the negative control. However, PS extracts showed a protective effect on HUVECs from H(2)O(2)-induced cell apoptosis with a significant reduction in MDA, SOD, CAT and GPX levels (P<0.05). Furthermore, PS had exhibited ferric reducing antioxidant power with its high phenolic content. Hence, it was concluded that PS plays a beneficial role in reducing oxidative stress in H(2)O(2)-induced HUVECs.
    Matched MeSH terms: Hydrogen Peroxide
  5. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  6. Asghar A, Bello MM, Raman AAA, Daud WMAW, Ramalingam A, Zain SBM
    Heliyon, 2019 Sep;5(9):e02396.
    PMID: 31517121 DOI: 10.1016/j.heliyon.2019.e02396
    In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.
    Matched MeSH terms: Hydrogen Peroxide
  7. M.E.A. Samsudin, M. Ikram Md Taib, N. Zainal, R. Radzali, S. Yaakob, Z. Hassan
    Sains Malaysiana, 2013;42:1333-1337.
    A number of n-type Si (100) samples were prepared into porous structures via electrochemical etching process, using an electrolyte solution; HF and ethanol. The morphological properties of the samples were observed under scanning electron microscope measurement. The results showed that the pore density, pore uniformity distribution and pore size of the porous Si samples increased with time of etching. In the next stage, H2O2 was introduced into the electrolyte solution in order to investigate its effect on the morphological properties of the porous Si. From the experiment, we found that H2O2 gave finer porous structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted smoother surface of the pore walls. Hence, the results showed that such porous Si structure could be used as a better substrate for the subsequent layer, in particular for the growth of cubic material.
    Matched MeSH terms: Hydrogen Peroxide
  8. Umar M, Aziz HA, Yusoff MS
    Waste Manag, 2010 Nov;30(11):2113-21.
    PMID: 20675113 DOI: 10.1016/j.wasman.2010.07.003
    Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  9. Kafi AKM, Yam CCL, Azmi NS, Yusoff MM
    J Nanosci Nanotechnol, 2018 Apr 01;18(4):2422-2428.
    PMID: 29442911 DOI: 10.1166/jnn.2018.14327
    In this work, the direct electrochemistry of hemoglobin (Hb), which was immobilized on carbonyl functionalized single walled carbon nanotube (SWCNT) and deposited onto a gold (Au) electrode has been described. The synthesis of the network of crosslinked SWCNT/Hb was done with the help of crosslinking agent EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). The UV-Vis and FTIR spectroscopy of SWCNT/Hb networks showed that Hb maintained its natural structure and kept good stability. In addition with this, scanning electron microscopy (SEM) illustrated that SWCNT/Hb networks had a featured layered structure and Hb being strongly liked with SWCNT surface. Cyclic voltammetry (CV) was used to study and to optimize the performance of the resulting modified electrode. The cyclic voltammetric (CV) responses of SWCNT/Hb networks in pH 7.0 exhibit prominent redox couple for the FeIII/II redox process with a midpoint potential of -0.46 V and -0.34, cathodic and anodic respectively. Furthermore, SWCNT/Hb networks are utilized for the detection of hydrogen peroxide (H2O2). Electrochemical measurements reveal that the resulting SWCNT/Hb electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, and low detection limit. Overall, the electrochemical results are due to excellent biocompatibility and excellent electron transport efficiency of CNT as well as high Hb loading and synergistic catalytic effect of the modified electrode toward H2O2.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  10. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
    Matched MeSH terms: Hydrogen Peroxide/analysis*
  11. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, et al.
    Biosens Bioelectron, 2015 May 15;67:129-33.
    PMID: 25113659 DOI: 10.1016/j.bios.2014.07.056
    A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
    Matched MeSH terms: Hydrogen Peroxide/isolation & purification*; Hydrogen Peroxide/chemistry
  12. Devasvaran K, Tan JJ, Ng CT, Fong LY, Yong YK
    Oxid Med Cell Longev, 2019;2019:1202676.
    PMID: 31531177 DOI: 10.1155/2019/1202676
    Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and β-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  13. Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, et al.
    Molecules, 2020 May 29;25(11).
    PMID: 32485974 DOI: 10.3390/molecules25112534
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  14. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  15. Tata MD, Kwan KC, Abdul-Razak MR, Paramalingam S, Yeen WC
    Ann Thorac Surg, 2009 May;87(5):1613-4.
    PMID: 19379926 DOI: 10.1016/j.athoracsur.2008.10.019
    A 39-year-old Indian man presented with necrotizing soft tissue infection of his right forearm and previously undiagnosed diabetes mellitus. The infection progressively worsened to involve his right lateral chest wall despite multiple debridements and systemic antibiotics. His right arm was eventually disarticulated along with wide debridement of the surrounding tissue. Aggressive wound debridement, mechanical scrubbing, and irrigation were then initiated every 8 hours. A superoxidized solution was later introduced as a wound irrigant and dressing agent. The large defect was suitable for split-thickness skin grafting after 16 days of a strict wound management routine with the superoxidized solution.
    Matched MeSH terms: Hydrogen Peroxide/therapeutic use*
  16. Eachempati P, Kumbargere Nagraj S, Kiran Kumar Krishanappa S, Gupta P, Yaylali IE
    Cochrane Database Syst Rev, 2018 12 18;12:CD006202.
    PMID: 30562408 DOI: 10.1002/14651858.CD006202.pub2
    BACKGROUND: With the increased demand for whiter teeth, home-based bleaching products, either dentist-prescribed or over-the-counter products have been exponentially increasing in the past few decades. This is an update of a Cochrane Review first published in 2006.

    OBJECTIVES: To evaluate the effects of home-based tooth whitening products with chemical bleaching action, dispensed by a dentist or over-the-counter.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 12 June 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library (searched 12 June 2018), MEDLINE Ovid (1946 to 12 June 2018), and Embase Ovid (1980 to 12 June 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (12 June 2018) and the World Health Organization International Clinical Trials Registry Platform (12 June 2018) were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included in our review randomised controlled trials (RCTs) which involved adults who were 18 years and above, and compared dentist-dispensed or over-the-counter tooth whitening (bleaching) products with placebo or other comparable products.Quasi-randomised trials, combination of in-office and home-based treatments, and home-based products having physical removal of stains were excluded.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two pairs of review authors independently extracted data and assessed risk of bias. We estimated risk ratios (RRs) for dichotomous data, and mean differences (MDs) or standardised mean difference (SMD) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.

    MAIN RESULTS: We included 71 trials in the review with 26 studies (1398 participants) comparing a bleaching agent to placebo and 51 studies (2382 participants) comparing a bleaching agent to another bleaching agent. Two studies were at low overall risk of bias; two at high overall risk of bias; and the remaining 67 at unclear overall risk of bias.The bleaching agents (carbamide peroxide (CP) gel in tray, hydrogen peroxide (HP) gel in tray, HP strips, CP paint-on gel, HP paint-on gel, sodium hexametaphosphate (SHMP) chewing gum, sodium tripolyphosphate (STPP) chewing gum, and HP mouthwash) at different concentrations with varying application times whitened teeth compared to placebo over a short time period (from 2 weeks to 6 months), however the certainty of the evidence is low to very low.In trials comparing one bleaching agent to another, concentrations, application method and application times, and duration of use varied widely. Most of the comparisons were reported in single trials with small sample sizes and event rates and certainty of the evidence was assessed as low to very low. Therefore the evidence currently available is insufficient to draw reliable conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use.Tooth sensitivity and oral irritation were the most common side effects which were more prevalent with higher concentrations of active agents though the effects were mild and transient. Tooth whitening did not have any effect on oral health-related quality of life.

    AUTHORS' CONCLUSIONS: We found low to very low-certainty evidence over short time periods to support the effectiveness of home-based chemically-induced bleaching methods compared to placebo for all the outcomes tested.We were unable to draw any conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use, as the overall evidence generated was of very low certainty. Well-planned RCTs need to be conducted by standardising methods of application, concentrations, application times, and duration of treatment.

    Matched MeSH terms: Hydrogen Peroxide/adverse effects; Hydrogen Peroxide/therapeutic use
  17. Hiu JJ, Yap MKK
    Biochem Soc Trans, 2020 04 29;48(2):719-731.
    PMID: 32267491 DOI: 10.1042/BST20200110
    The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
    Matched MeSH terms: Hydrogen Peroxide
  18. Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL
    Environ Sci Pollut Res Int, 2023 Mar;30(12):34363-34377.
    PMID: 36512276 DOI: 10.1007/s11356-022-24647-5
    Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
    Matched MeSH terms: Hydrogen Peroxide
  19. Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS
    Cell Biochem Biophys, 2024 Mar;82(1):153-173.
    PMID: 38198024 DOI: 10.1007/s12013-023-01210-8
    Colorectal cancer (CRC) is the most common cancer in both men and women and is associated with increased telomerase levels and activity. The potential downstream effects of TERT and/or TERC downregulation by berberine (a telomerase inhibitor) or RNA interference (RNAi) on various target RNAs, proteins, relative telomerase activity (RTA), relative telomere length (RTL), hydrogen peroxide concentration [H2O2], percentage of cell cycle distribution, cell size and granularity as well as cellular metabolites were explored in HCT 116 cell line. Knockdown of TERT decreased TERC. The downregulation of TERT and/or TERC caused increment of [H2O2], G0/G1 phase arrest in addition to decreased S and G2/M phases, as well as diminished cell size. RTL was later reduced as a result of TERT, TERT and/or TERC downregulation which decreased RTA. It was discovered that xanthine oxidase (XO) was significantly and positively correlated at FDR-adjusted p value 
    Matched MeSH terms: Hydrogen Peroxide
  20. Ge Q, Zhao S, Shao X, Wei Y, Chen J, Wang H, et al.
    World J Microbiol Biotechnol, 2024 Apr 13;40(5):161.
    PMID: 38613738 DOI: 10.1007/s11274-024-03967-3
    Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.
    Matched MeSH terms: Hydrogen Peroxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links