Displaying publications 1 - 20 of 1188 in total

Abstract:
Sort:
  1. Rosnah Shamsudin, Zulkifli, N. A., ?Amanina Amani Kamarul Zaman?
    MyJurnal
    Blending or mixing two or more of fruit juices is able to improve the quality of juices as
    compared to single flavour. Pineapple and mango are among the popular tropical fruits in
    Malaysia. Despite the massive production of pineapple in Malaysia, utilisation of pineapple as
    a juice remains unpopular due to its exotic and strong flavour. Blending of pineapple with
    mango is believed to overcome this issue. Nevertheless, suitable blending ratios play important role in the end product quality. The present work aims to determine the physicochemical
    and nutritional quality of fresh blended pineapple-mango juice at different blending ratios for
    25 days of refrigerated storage (4 ± 2°C). Physicochemical (colour, pH, titratable acidity, and
    total soluble solid) and nutritional (vitamin C, total phenolic content, and total antioxidant
    content) properties of fresh pineapple-mango juice blends of ratio 80% pineapple with 20%
    mango (R80:20) and 50% pineapple with 50% mango (50:50) were determined throughout 25
    days of storage. Pineapple-mango juice blends at blending ratio of R80:20 exhibited better
    qualities in term of colour (lightness, chroma, hue, and browning index), chemical composition, and nutritional content.
    Matched MeSH terms: Hydrogen-Ion Concentration
  2. Yousef TA, Sahu UK, Jawad AH, Abd Malek NN, Al Duaij OK, ALOthman ZA
    Int J Phytoremediation, 2023;25(9):1142-1154.
    PMID: 36305491 DOI: 10.1080/15226514.2022.2137102
    A low-cost fruit waste namely watermelon peel (WMP) was utilized as a promising precursor for the preparation of mesoporous activated carbon (WMP-AC) via microwave assisted-K2CO3 activation. The WMP-AC was applied as an adsorbent for methylene blue dye (MB) removal. Several types of characterizations, such as specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Elemental Analysis (CHNS/O), and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the physicochemical properties of WMP-AC. Furthermore, Box-Behnken design (BBD) was applied to optimize the influence of the adsorption operational variables (contact time, adsorbent dose, working temperature, and solution pH) on MB dye adsorption. Thus, based on significant interactions, the optimum BBD output shows the best removal of 50 mg·L-1 MB (92%) was recorded at an adsorbent dose of 0.056 g, contact time of 4.4 min, working temperature of 39 °C, and solution pH 8.4. The Langmuir uptake capacity of WMP-AC was found to be 312.8 mg·g-1, with the best fitness to the pseudo-second-order kinetics model and an endothermic adsorption process. The adsorption mechanisms of MB by WMP-AC can be assigned to the hydrogen bonding, electrostatic attraction, and π-π stacking. The findings of this study indicate that WMP is a promising precursor for producing porous activated carbon for MB dye removal.
    Matched MeSH terms: Hydrogen-Ion Concentration
  3. Hapiz A, Jawad AH, Wilson LD, ALOthman ZA
    Int J Phytoremediation, 2024 Feb;26(3):324-338.
    PMID: 37545130 DOI: 10.1080/15226514.2023.2241912
    In this investigation, microwave irradiation assisted by ZnCl2 was used to transform pineapple crown (PN) waste into mesoporous activated carbon (PNAC). Complementary techniques were employed to examine the physicochemical characteristics of PNAC, including BET, FTIR, SEM-EDX, XRD, and pH at the point-of-zero-charge (pHpzc). PNAC is mesoporous adsorbent with a surface area of 1070 m2/g. The statistical optimization for the adsorption process of two model cationic dyes (methylene blue: MB and, crystal violet: CV) was conducted using the response surface methodology-Box-Behnken design (RSM-BBD). The parameters include solution pH (4-10), contact time (2-12) min, and PNAC dosage (0.02-0.1 g/100 mL). The Freundlich and Langmuir models adequately described the dye adsorption isotherm results for the MB and CV systems, whereas the pseudo-second order kinetic model accounted for the time dependent adsorption results. The maximum adsorption capacity (qmax) for PNAC with the two tested dyes are listed: 263.9 mg/g for CV and 274.8 mg/g for MB. The unique adsorption mechanism of MB and CV dyes by PNAC implicates multiple contributions to the adsorption process such as pore filling, electrostatic forces, H-bonding, and π-π interactions. This study illustrates the possibility of transforming PN into activated carbon (PNAC) with the potential to remove two cationic dyes from aqueous media.
    Matched MeSH terms: Hydrogen-Ion Concentration
  4. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, Wilson LD, et al.
    Int J Phytoremediation, 2024;26(4):459-471.
    PMID: 37583281 DOI: 10.1080/15226514.2023.2246596
    This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.
    Matched MeSH terms: Hydrogen-Ion Concentration
  5. YAP JAA YEE, AMIZA MAT AMIN
    MyJurnal
    This study aimed to determine the physicochemical properties of undulated surf clam (Paphia undulata) hydrolysate as affected by the degree of hydrolysis (DH). Three levels of DH of undulated surf clam hydrolysate were prepared which were DH 36.57% (without any enzymatic hydrolysis), DH 58.25% (0.5% Alcalase®; 5 min; pH 7.5; 60ºC) and DH 91.26% (1% Alcalase®; 30 min; pH 7.5; 60ºC). After protein hydrolysis, the undulated surf clam hydrolysates were centrifuged, and their supernatants were freeze-dried. This study found that the protein hydrolysate with lower DH (DH 36.57%) gave lower protein content and higher ash and fat contents compared to other samples (DH 58.25% and DH 91.26%). However, the carbohydrate content is similar in all samples (16.56-20.04%). This study also found that foaming properties (29.43-67.50%), emulsifying capacity (11.94-110.52%) and peptide solubility (57.61-94.08%) were affected by the DH. As DH increased, the emulsifying capacity decreased, while peptide solubility increased. While the foaming capacity increased with increasing DH until it reached a maximum value and level off afterwards. For colour parameters, although there were differences between L*, a* and b* values for all three samples, a fluctuating pattern was noted with DH. DH also did not affect the water-holding and oil-holding capacity of undulated surf clam hydrolysate. This study shows that certain physicochemical properties of undulated surf clam hydrolysate can be tailored by adjusting the degree of hydrolysis.
    Matched MeSH terms: Hydrogen-Ion Concentration
  6. LING SHING YUN, ASMADI ALI
    MyJurnal
    At present, heavy metal pollution is a major environmental concern and the adsorption technique is a potent method for removal of these heavy metals from wastewater. Activated carbon is one of the best adsorbents for metal ionsremoval but it is sometimes restricted due to high cost and problems with regeneration hamper large scale application. Low cost adsorbent is alternatively being introduced to replace activated carbon since it is available in large quantity, renewable and inexpensive. Hence, Pennisetum purpureum(elephant grass) was investigated for its potential in cadmium ions removal. The adsorbent was characterized by Fourier Transforms Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) analyses.The effects of pH (1 to 5), initial metal ion concentration (5 to 25 mg/L), contact time (10 to 60 minutes) and adsorbent dosage (0.2 to 1.0 g) on cadmium ions removal were conducted by batch adsorption experiments. In this study, the FT-IR results demonstrated that the functional groups for untreated and nitric acid-treated P. purpureum mainly consisted of carbonyl, carboxyl, hydroxyl and amine groups which are able to bind with positively charged cadmium ions. SEM micrographs have proven that nitric acid modification would remove the surface impurities of P. purpureum, which increased the surface roughness, produced deep, open pores and better pore size distribution. From the BET and BJH analyses, the treated P. purpureum was mesoporous, had larger surface area and pore volume compared to untreated P. purpureum. The best pH, adsorbent dosage and contact time were pH 4, 0.6 g and 30 minutes, respectively. The highest removal percentage of cadmium ions for both untreated and treated P. purpureum were 92% and 98% correspondingly. The results shown strengthened the fact that both biosorbents have great potential in cadmium ions removal.
    Matched MeSH terms: Hydrogen-Ion Concentration
  7. Wee Ling JL, Khan A, Saad B, Ab Ghani S
    Talanta, 2012 Jan 15;88:477-83.
    PMID: 22265529 DOI: 10.1016/j.talanta.2011.11.018
    A new poly(4-vinyl pyridine) (P4VP) based cadmium (Cd)-ion selective electrode (ISE) was developed. The 4-vinyl pyridine (4VP) was first polymerized electrochemically on the surface of graphite, later characterized by FTIR, SEM/EDX and then optimized as ISE for Cd. At optimal pH 6.4, slope of 27.7±0.8mVdecade(-1), linear concentration range of 1×10(-7) to 1.0×10(-1)M Cd(2+) and limit of detection (S/N=3) of 2.51×10(-8)M were obtained. The ISE was very selective towards Cd(2+), with K(pot)<1×10(-2) in the presence of the usual cations and anions in water samples. Response time and shelf life of less than 1min and 90 days, respectively, were observed. Its application was tested in various types of samples.
    Matched MeSH terms: Hydrogen-Ion Concentration
  8. Ghadimi H, Tehrani RM, Ali AS, Mohamed N, Ab Ghani S
    Anal Chim Acta, 2013 Feb 26;765:70-6.
    PMID: 23410628 DOI: 10.1016/j.aca.2012.12.039
    A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02-450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.
    Matched MeSH terms: Hydrogen-Ion Concentration
  9. Nur Aainaa H, Haruna Ahmed O, Ab Majid NM
    PLoS One, 2018;13(9):e0204401.
    PMID: 30261005 DOI: 10.1371/journal.pone.0204401
    Efficient management of P fertilizers ensures good yield of crops and adequate food supply. In the acid soil of the tropics, soluble P is fixed by Al and Fe. Exploitation of the high CEC and pH of Clinoptilolite zeolite (CZ) could mitigate low soil pH and P fixation in acid soils. This study was undertaken to determine the effects of amending a weathered acid soil with CZ on: (i) soil P availability and other related soil chemical properties, and (ii) nutrient concentration, nutrient uptake, above-ground biomass, agronomic efficiency, and yield of Zea mays L. on a tropical acidic soil. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. The treatments evaluated were: (i) soil alone, (ii) 100% recommended fertilizer rate (NPK), and (iii) 75% fertilizer rate + Clinoptilolite zeolite. Selected soil chemical properties and P availability were determined before and after field trials. Zea mays L. above-ground biomass, nutrient concentration, nutrient uptake, agronomic efficiency, and fresh cob yield were also determined. Results revealed that the effects of treatments with and without CZ treatments on soil pH, P fractions, soil acidity, dry matter production, yield of maize, nutrient uptake, and agronomic efficiency were similar. Hence, suggesting CZ inclusion in the fertilization program of Zea mays L is beneficial in terms of reducing excessive or unbalanced use of chemical fertilizers due to reduction of fertilizers usage by 25%.
    Matched MeSH terms: Hydrogen-Ion Concentration
  10. Raoov M, Mohamad S, Abas MR
    J Hazard Mater, 2013 Dec 15;263 Pt 2:501-16.
    PMID: 24231314 DOI: 10.1016/j.jhazmat.2013.10.003
    Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m(2)g(-1)). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as -55.99 J/Kmol and -18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π-π interaction are the main processes involved in the adsorption process.
    Matched MeSH terms: Hydrogen-Ion Concentration
  11. Noorashikin MS, Raoov M, Mohamad S, Abas MR
    Int J Mol Sci, 2013;14(12):24531-48.
    PMID: 24351832 DOI: 10.3390/ijms141224531
    A cloud point extraction (CPE) process using non-ionic surfactant (DC193C) to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC). The CPE process with the presence of β-cyclodextrin (βCD) functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL) is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C). The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013-0.038 µg mL-1. Finally, the inclusion complex formation, hydrogen bonding, and π-π interaction between the βCD-IL, benzyl paraben (ArP), and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy.
    Matched MeSH terms: Hydrogen-Ion Concentration
  12. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2009 Aug;76(9):1296-302.
    PMID: 19570564 DOI: 10.1016/j.chemosphere.2009.06.007
    This study was undertaken in order to understand the factors affecting the degradation of an insect repellent, N,N-diethyl-m-toluamide (DEET) by ozonation. Kinetic studies on DEET degradation were carried out under different operating conditions, such as varied ozone doses, pH values of solution, initial concentrations of DEET, and solution temperatures. The degradation of DEET by ozonation follows the pseudo-first-order kinetic model. The rate of DEET degradation increased exponentially with temperature in the range studied (20-50 degrees C) and in proportion with the dosage of ozone applied. The ozonation of DEET under different pH conditions in the presence of phosphate buffer occurred in two stages. During the first stage, the rate constant, k(obs), increased with increasing pH, whereas in the second stage, the rate constant, k(obs2), increased from pH 2.3 up to 9.9, however, it decreased when the pH value exceeded 9.9. In the case where buffers were not employed, the k(obs) were found to increase exponentially with pH from 2.5 to 9.2 and the ozonation was observed to occur in one stage. The rate of degradation decreased exponentially with the initial concentration of DEET. GC/MS analysis of the by-products from DEET degradation were identified to be N,N-diethyl-formamide, N,N-diethyl-4-methylpent-2-enamide, 4-methylhex-2-enedioic acid, N-ethyl-m-toluamide, N,N-diethyl-o-toluamide, N-acetyl-N-ethyl-m-toluamide, N-acetyl-N-ethyl-m-toluamide 2-(diethylamino)-1-m-tolylethanone and 2-(diethylcarbamoyl)-4-methylhex-2-enedioic acid. These by-products resulted from ozonation of the aliphatic chain as well as the aromatic ring of DEET during the degradation process.
    Matched MeSH terms: Hydrogen-Ion Concentration
  13. Nawaz M, Arayne MS, Sultana N, Abbas HF
    PMID: 25300038 DOI: 10.1016/j.saa.2014.08.152
    This work describes a RP-HPLC method for the determination and interaction studies of cefpirome with ACE-inhibitors (captopril, enalapril and lisinopril) in various buffers. The separation and interaction of cefpirome with ACE-inhibitors was achieved on a Purospher Star, C18 (5 μm, 250×4.6 mm) column. Mobile phase consisted of methanol: water (80:20, v/v, pH 3.3); however, for the separation of lisinopril, it was modified to methanol-water (40:60, v/v, pH 3.3) and pumped at a flow rate of 1 mL min(-1). In all cases, UV detection was performed at 225 nm. Interactions were carried out in physiological pH i.e., pH 1 (simulated gastric juice), 4 (simulated full stomach), 7.4 (blood pH) and 9 (simulated GI), drug contents were analyzed by reverse phase high performance liquid chromatography. Method was found linear in the concentration range of 1.0-50.0 μg mL(-1) with correlation coefficient (r(2)) of 0.999. Precision (RSD%) was less than 2.0%, indicating good precision of the method and accuracy was 98.0-100.0%. Furthermore, cefpirome-ACE-inhibitors' complexes were also synthesized and results were elucidated on the basis of FT-IR, and (1)H NMR. The interaction results show that these interactions are pH dependent and for the co-administration of cefpirome and ACE-inhibitors, a proper interval should be given.
    Matched MeSH terms: Hydrogen-Ion Concentration
  14. Naje AS, Chelliapan S, Zakaria Z, Abbas SA
    J Environ Manage, 2016 Jul 1;176:34-44.
    PMID: 27039362 DOI: 10.1016/j.jenvman.2016.03.034
    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption.
    Matched MeSH terms: Hydrogen-Ion Concentration
  15. Shanmugam S, Jenkins SN, Mickan BS, Jaafar NM, Mathes F, Solaiman ZM, et al.
    Sci Rep, 2021 01 13;11(1):955.
    PMID: 33441591 DOI: 10.1038/s41598-020-78843-9
    Co-application of biochar and biosolids to soil has potential to mitigate N leaching due to physical and chemical properties of biochar. Changes in N cycling pathways in soil induced by co-application of biological amendments could further mitigate N loss, but this is largely unexplored. The aim of this study was to determine whether co-application of a biochar and a modified biosolids product to three pasture soils differing in texture could alter the relative abundance of N cycling genes in soil sown with subterranean clover. The biosolids product contained lime and clay and increased subterranean clover shoot biomass in parallel with increases in soil pH and soil nitrate. Its co-application with biochar similarly increased plant growth and soil pH with a marked reduction in nitrate in two coarse textured soils but not in a clayey soil. While application of the biosolids product altered in silico predicted N cycling functional genes, there was no additional change when applied to soil in combination with biochar. This supports the conclusion that co-application of the biochar and biosolids product used here has potential to mitigate loss of N in coarse textured soils due to N adsoption by the biochar and independently of microbial N pathways.
    Matched MeSH terms: Hydrogen-Ion Concentration
  16. Chong SW, Lai CW, Abd Hamid SB
    Materials (Basel), 2016 Jan 25;9(2).
    PMID: 28787869 DOI: 10.3390/ma9020069
    A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
    Matched MeSH terms: Hydrogen-Ion Concentration
  17. Ramli MR, Siew WL, Ibrahim NA, Kuntom A, Abd Razak RA
    PMID: 25798697 DOI: 10.1080/19440049.2015.1032368
    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
    Matched MeSH terms: Hydrogen-Ion Concentration
  18. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
    Matched MeSH terms: Hydrogen-Ion Concentration
  19. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Hydrogen-Ion Concentration
  20. Abd-Aziz S
    J Biosci Bioeng, 2002;94(6):526-9.
    PMID: 16233345
    The importance and development of industrial biotechnology processing has led to the utilisation of microbial enzymes in various applications. One of the important enzymes is amylase, which hydrolyses starch to glucose. In Malaysia, the use of sago starch has been increasing, and it is presently being used for the production of glucose. Sago starch represents an alternative cheap carbon source for fermentation processes that is attractive out of both economic and geographical considerations. Production of fermentable sugars from the hydrolysis of starches is normally carried out by an enzymatic processes that involves two reaction steps, liquefaction and saccharification, each of which has different temperature and pH optima with respect to the maximum reaction rate. This method of starch hydrolysis requires the use of an expensive temperature control system and a complex mixing device. Our laboratory has investigated the possibility of using amylolytic enzyme-producing microorganisms in the continuous single-step biological hydrolysis of sago flour for the production of a generic fermentation medium. The ability of a novel DNA-recombinated yeast, Saccharomyces cerevisiae strain YKU 107 (expressing alpha-amylase production) to hydrolyse gelatinised sago starch production has been studied with the aim of further utilizing sago starch to obtain value-added products.
    Matched MeSH terms: Hydrogen-Ion Concentration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links