Displaying publications 1 - 20 of 233 in total

Abstract:
Sort:
  1. Li H, Wan Mustapha WA, Tian G, Dong N, Zhao F, Zhang X, et al.
    Food Chem, 2024 Jan 15;431:137102.
    PMID: 37579608 DOI: 10.1016/j.foodchem.2023.137102
    To enhance the solubility of hydrophobic nutrients, the hydrophobicity of fish scale gelatin hydrolysate (FSGH) was increased with moderate acid or alkali hydrolysis. Acid-induced FSG hydrolysate (AcFSGH) at 3 h showed a superior curcumin loading efficiency (18.30 ± 0.38 μg/mL) among all FSGHs. Compared with FSG, the proportion of hydrophobic amino acids (from 41.1% to 46.4%) and the hydrophobic interaction (from 12.72 to 20.10 mg/mL) was significantly increased in the AcFSGH. Meanwhile, the transformation of the α-helix (from 12.8% to 4.9%) to the β-sheet (from 29.0% to 42.8%) was also observed in the AcFSGH. Based on the observation in the molecular weight and morphological analysis, AcFSGH acquired the best hydrophobic interaction with curcumin, presumably due to the formation of the flexible structure of the linear hydrolyzates. The above results call for an investigation of the role of FSG hydrolysate in the synthesis of nanoparticles loaded with bioactive lipophilic compounds.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  2. Poulose A, Mathew A, Uthaman A, Lal HM, Parameswaranpillai J, Mathiazhagan A, et al.
    Int J Biol Macromol, 2024 Jan;255:128004.
    PMID: 37979737 DOI: 10.1016/j.ijbiomac.2023.128004
    Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  3. Usman J, Salami BA, Gbadamosi A, Adamu H, Usman AG, Benaafi M, et al.
    Chemosphere, 2023 Aug;331:138726.
    PMID: 37116721 DOI: 10.1016/j.chemosphere.2023.138726
    Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  4. Hu Q, Ma F, Wei H, Yang W, Deng S, Yu X, et al.
    J Texture Stud, 2023 Aug;54(4):582-594.
    PMID: 37400374 DOI: 10.1111/jtxs.12785
    The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and β-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  5. Chua MX, Cheah YT, Tan WH, Chan DJC
    Environ Res, 2023 May 01;224:115544.
    PMID: 36822535 DOI: 10.1016/j.envres.2023.115544
    Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  6. Rawindran H, Syed R, Alangari A, Khoo KS, Lim JW, Sahrin NT, et al.
    Environ Res, 2023 Apr 01;222:115352.
    PMID: 36716802 DOI: 10.1016/j.envres.2023.115352
    The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  7. Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, et al.
    Curr Pharm Des, 2023;29(36):2853-2866.
    PMID: 37946351 DOI: 10.2174/0113816128266398231027100119
    Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  8. Pandey RP, Kallem P, Rasheed PA, Mahmoud KA, Banat F, Lau WJ, et al.
    Chemosphere, 2022 Feb;289:133144.
    PMID: 34863730 DOI: 10.1016/j.chemosphere.2021.133144
    An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  9. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al.
    Int J Mol Sci, 2021 Nov 30;22(23).
    PMID: 34884787 DOI: 10.3390/ijms222312984
    Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  10. Ashraf MA, Islam A, Butt MA, Hussain T, Khan RU, Bashir S, et al.
    Int J Biol Macromol, 2021 Nov 30;191:872-880.
    PMID: 34571131 DOI: 10.1016/j.ijbiomac.2021.09.131
    Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  11. Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, et al.
    Inorg Chem, 2021 Oct 18;60(20):15291-15309.
    PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899
    Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  12. Sergeev A, Motyakin M, Barashkova I, Zaborova V, Krasulya O, Yusof NSM
    Ultrason Sonochem, 2021 Sep;77:105673.
    PMID: 34311321 DOI: 10.1016/j.ultsonch.2021.105673
    The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  13. Wan Ikhsan SN, Yusof N, Aziz F, Ismail AF, Jaafar J, Wan Salleh WN, et al.
    J Environ Manage, 2021 Jul 15;290:112565.
    PMID: 33873023 DOI: 10.1016/j.jenvman.2021.112565
    The vast amount of oily wastewater released to the environment through industrialization has worsened the water quality in recent years, posing adverse impacts on general human health. Oil emulsified in water is one of the most difficult mixtures to be treated, making it imperative for new technology to be explored to address this issue. The use of conventional water treatment such as flotation, coagulation, precipitation, adsorption, and chemical treatment have low separation efficiencies and high energy costs, and are not applicable to the separation of oil/water emulsions. Therefore, there is a demand for more efficient methods and materials for the separations of immiscible oil/water mixtures and emulsions. Superwetting materials that can repel oil, while letting water pass through have been widely explored to fit into this concern. These materials usually make use of simultaneous hydrophilic/oleophobic mechanisms to allow a solid surface to separate oily emulsion with little to no use of energy. Also, by integrating specific wettability concepts with appropriate pore scale, solid surfaces may achieve separation of multifarious oil/water mixtures namely immiscible oil/water blends and consolidated emulsions. In this review, materials used to impart superwetting in solid surfaces by focusing on superhydrophilic/superoleophobic wetting properties of the materials categorized into fluorinated and non-fluorinated surface modification are summarized. In each material, its background, mechanism, fabricating processes, and their effects on solid surface's wetting capability are elaborated in detail. The materials reviewed in this paper are mainly organic and green, suggesting the alternative material to replace the fluorine group that is widely used to achieve oleophobicity in oily wastewater treatment.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  14. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  15. Yap JX, Leo CP, Mohd Yasin NH, Derek CJC
    Chemosphere, 2021 Jun;273:129657.
    PMID: 33524750 DOI: 10.1016/j.chemosphere.2021.129657
    Microalgae cultivation using open cultivation systems requires large area and it is susceptible to contamination as well as weather changes. Meanwhile, the closed systems require large capital investment, and they are susceptible to the build-up of dissolved oxygen. Air-liquid interface culture systems with low water-footprint, but high packing density can be used for microalgae cultivation if low-cost culture scaffolds are available. In this study, cellulose-based scaffolds were synthesized using NaOH/urea aqueous solution as the solvent. Titanium dioxide (TiO2), silica gel and polyethylene glycol 1000 (PEG 1000) nanoparticles were added into the membrane scaffolds to increase the hydrophilicity of nutrient absorbing to support the growth of microalgae. The membrane scaffolds were characterized by FTIR, SEM, contact angle, porosity and porometry. All three nanoparticles additives showed their ability in reducing the contact angle of membrane scaffolds from 63.4 ± 2.3° to a range of 52.6 ± 1.2° to 38.8 ± 1.5° due to the hydrophilic properties of the nanoparticles. The decreasing in pore size when nanoparticles were added did not affect the porosity of membrane scaffolds. Cellulose membrane scaffold with TiO2 showed the highest percentage of microalgae Navicula incerta growth rate of 22.1% because of the antibacterial properties of TiO2 in lowering the risk of cell contamination and enhancing the growth of N. incerta. The results exhibited that cellulose-based scaffold with TiO2 added could be an effective support in plant cell culture field.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  16. Hossain Brishti F, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Karthikeyan S, et al.
    Food Chem, 2021 May 15;344:128643.
    PMID: 33246681 DOI: 10.1016/j.foodchem.2020.128643
    Mung bean protein isolate was texturized at different feed moisture contents (30.0, 49.3, and 60.0%) at a constant temperature (144.57 °C) to evaluate the changes in protein profile, solubility, thermal, structural (at secondary and tertiary levels) and rheological properties. SDS-PAGE, surface hydrophobicity, circular dichroism, FTIR spectroscopy, and fluorescence analyses revealed protein unfolding, aggregation, and structural rearrangement as a function of feed moisture content. Extrusion at 49.3% feed moisture produced texturized mung bean protein (TMBP) with favourable partial denaturation, the formation of small aggregates, improved solubility, and digestibility with strong gel forming behaviour, whereas 30.0 and 60.0% moisture content resulted in complete protein denaturation, the undesirable formation of large aggregates and weak gels. In conclusion, protein denaturation and formation of aggregates can be controlled by manipulating feed moisture content during extrusion, with 49.3% feed moisture prompting favourable partial denaturation to produce TMBP with desirable qualities for use as a vegetarian-based meat extender.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  17. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  18. Ng HS, Kee PE, Yim HS, Tan JS, Chow YH, Lan JC
    J Biosci Bioeng, 2021 May;131(5):537-542.
    PMID: 33674222 DOI: 10.1016/j.jbiosc.2021.01.004
    Gallic acid (GA) is a hydrophilic polyphenol which is noteworthy for strong antioxidant capacity. The drawbacks of conventional extraction approaches such as time-consuming and high processing cost are often viewed as a hurdle to extract GA from plant sources in industrial scale. Aqueous two-phase system (ATPS) is a separation approach which can be employed as an alternative to the conventional approaches. The partition behaviour of GA in an alcohol/salt ATPS was investigated in this study to aid the development of industrial scale ATPS to extract GA from natural sources. The separation of GA was characterized by determining the types of alcohol and salt, phase composition, sample load, pH of the system and addition of adjuvants applied in the alcohol/salt ATPS construction. The hydrophilic GA was targeted to the salt-rich phase of the alcohol/salt ATPS with a partition coefficient (KGA) of 25.00 ± 0.00. The optimum condition of ATPS for the maximum partition of GA was achieved in ATPS comprised of 24% (w/w) 1-propanol and 22% (w/w) phosphate salt at pH 8 with 5% (w/w) of 1 mg/mL sample loading and 2% (w/w) NaCl addition. The findings suggest that ATPS can be applied for separation of GA from various natural sources.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  19. Veerasamy R, Rajak H
    Turk J Pharm Sci, 2021 04 20;18(2):151-156.
    PMID: 33900700 DOI: 10.4274/tjps.galenos.2020.45556
    Objectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

    Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

    Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.

    Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  20. Zakuwan SZ, Ahmad I, Abu Tahrim N, Mohamed F
    Polymers (Basel), 2021 Apr 06;13(7).
    PMID: 33917600 DOI: 10.3390/polym13071176
    In this study, we fabricated a modified biomaterial based on chitosan and gelatin, which is an intrinsic hydrophilic membrane for oil-water separation to clean water contamination by oil. Modification of the membrane with a non-toxic natural crosslinker, genipin, significantly enhanced the stability of the biopolymer membrane in a water-based medium towards an eco-friendly environment. The effects of various compositions of genipin-crosslinked chitosan-gelatin membrane on the rheological properties, thermal stability, and morphological structure of the membrane were investigated using a dynamic rotational rheometer, thermogravimetry analysis, and chemical composition by attenuated total reflectance spectroscopy (ATR). Modified chitosan-gelatin membrane showed completely miscible blends, as determined by field-emission scanning electron microscopy, differential scanning calorimetry, and ATR. Morphological results showed membrane with establish microstructure to further experiment as filtration product. The membranes were successfully tested for their oil-water separation efficiencies. The membrane proved to be selective and effective in separating water from an oil-water mixture. The optimum results achieved a stable microporous structure of the membrane (microfiltration) and a separation efficiency of above 98%. The membrane showed a high permeation flux, generated as high as 698 and 420 L m-2 h-1 for cooking and crude oils, respectively. Owing to its outstanding recyclability and anti-fouling performance, the membrane can be washed away easily, ensuring the reusability of the prepared membrane.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links