Displaying publications 1 - 20 of 228 in total

Abstract:
Sort:
  1. Mohan D, Sajab MS, Kaco H, Bakarudin SB, Noor AM
    Nanomaterials (Basel), 2019 Dec 03;9(12).
    PMID: 31817002 DOI: 10.3390/nano9121726
    The recognition of nanocellulose has been prominent in recent years as prospect materials, yet the ineffectiveness of nanocellulose to disperse in an organic solvent has restricted its utilization, especially as a reinforcement in polymer nanocomposite. In this study, cellulose has been isolated and defibrillated as cellulose nanofibrils (CNF) from oil palm empty fruit bunch (EFB) fibers. Subsequently, to enhance its compatibility with UV-curable polyurethane (PU)-based resin, the surface hydrophilicity of CNF has been tailored with polyethylene glycol (PEG), as well as reduced graphene oxide (rGO). The dispersibility of reinforced modified CNF in UV-curable PU was examined through the transmittance interruption of resin, chemical, and mechanical properties of the composite printed using the stereolithographic technique. Evidently, the enhanced compatibility of modified CNF and UV-curable PU was shown to improve the tensile strength and hardness of the composites by 37% and 129%, respectively.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  2. Ng ZC, Roslan RA, Lau WJ, Gürsoy M, Karaman M, Jullok N, et al.
    Polymers (Basel), 2020 Aug 21;12(9).
    PMID: 32825561 DOI: 10.3390/polym12091883
    The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19-119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  3. Mohamad SB, Ong AL, Khairuddin RF, Ripen AM
    In Silico Biol. (Gedrukt), 2010;10(3):145-53.
    PMID: 22430288 DOI: 10.3233/ISB-2010-0423
    Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  4. Kim HP, Vasilopoulou M, Ullah H, Bibi S, Ximim Gavim AE, Macedo AG, et al.
    Nanoscale, 2020 Apr 14;12(14):7641-7650.
    PMID: 32207472 DOI: 10.1039/c9nr10745b
    Organo-metal halide perovskite field-effect transistors present serious challenges in terms of device stability and hysteresis in the current-voltage characteristics. Migration of ions located at grain boundaries and surface defects in the perovskite film are the main reasons for instability and hysteresis issues. Here, we introduce a perovskite grain molecular cross-linking approach combined with amine-based surface passivation to address these issues. Molecular cross-linking was achieved through hydrogen bond interactions between perovskite halogens and dangling bonds present at grain boundaries and a hydrophobic cross-linker, namely diethyl-(12-phosphonododecyl)phosphonate, added to the precursor solution. With our approach, we obtained smooth and compact perovskite layers composed of tightly bound grains hence significantly suppressing the generation and migration of ions. Moreover, we achieved efficient surface passivation of the perovskite films upon surface treatment with an amine-bearing polymer, namely polyethylenimine ethoxylated. With our synergistic grain and surface passivation approach, we were able to demonstrate the first perovskite transistor with a complete lack of hysteresis and unprecedented stability upon continuous operation under ambient conditions. Added to the merits are its ambipolar transport of opposite carriers with balanced hole and electron mobilities of 4.02 and 3.35 cm2 V-1 s-1, respectively, its high Ion/Ioff ratio >104 and the lowest sub-threshold swing of 267 mV dec-1 reported to date for any perovskite transistor. These remarkable achievements obtained through a cost-effective molecular cross-linking of grains combined with amine-based surface passivation of the perovskite films open a new era and pave the way for the practical application of perovskite transistors in low-cost electronic circuits.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  5. Chua MX, Cheah YT, Tan WH, Chan DJC
    Environ Res, 2023 May 01;224:115544.
    PMID: 36822535 DOI: 10.1016/j.envres.2023.115544
    Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  6. Halim, N. R. A., Sarbon, N. M.
    MyJurnal
    The study aims to determine the optimized condition of eel protein hydrolysate (EPH)
    produced using alcalase. The proximate compositions of eel flesh were determined as well.
    Enzymatic hydrolysis conditions were optimized using response surface methodology (RSM)
    by applying four factors, 3-levels Central Composite Design (CCD) with six centre points. The
    model equation was proposed with regards to the time (60min, 120min, 180min), temperature
    (40°C, 50°C, 60°C), pH (7, 8, 9) and enzyme concentration (1%, 2%, 3%). The optimum of
    hydrolysis condition that be suggested to obtain the optimum yield, degree of hydrolysis (DH)
    and antioxidant activity were 84.02 min, 50.18°C, pH 7.89 and 2.26% [enzyme]. The predicted
    response values using quadratic model were 10.03% for yield, 83.23% for DH and 89.24%
    for antioxidant activity. The chemical composition determination showed that the protein
    content increased by more than 5-fold (16.88% to 98.53%) while the fat content was decreased
    by 96.48% after hydrolysis. Hydrolysis process had significantly increased the amount of
    both hydrophilic (serine and threonine) and hydrophobic amino acids (valine, isoleucine,
    phenylalanine, methionine) which contributed to the antioxidant activity of hydrolyzed eel
    protein. The enzymatic hydrolysis of eel protein had improved the protein content of EPH with
    potential as new natural antioxidant.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  7. Wang Y, Lee SM, Gentle IR, Dykes GA
    Biofouling, 2020 11;36(10):1227-1242.
    PMID: 33412938 DOI: 10.1080/08927014.2020.1865934
    A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  8. Koupaei Malek S, Gabris MA, Hadi Jume B, Baradaran R, Aziz M, Karim KJBA, et al.
    Daru, 2019 Jun;27(1):9-20.
    PMID: 30554368 DOI: 10.1007/s40199-018-0232-2
    Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  9. Sani FA, Heidelberg T, Hashim R, Farhanullah
    Colloids Surf B Biointerfaces, 2012 Sep 1;97:196-200.
    PMID: 22609603 DOI: 10.1016/j.colsurfb.2012.03.030
    A series of glucose based surfactants varying in chain length and anomeric configuration were synthesized and investigated on their surfactant properties. The synthesis applied glycosylation of propargyl alcohol followed by cycloaddition with alkyl azides in CLICK chemistry fashion. This approach enables a homogeneous coupling of hydrophilic unprotected sugars and hydrophobic paraffin components in low molecular weight alcohols without solvent side reactions, as commonly found for APGs. The combination of alcohols as inert medium with practically quantitative coupling of the surfactant domains avoids particularly hydrophobic contaminations of the surfactant, thus providing access to pure surfactants. ATGs with chain lengths up to 12 carbons exhibit Krafft points below room temperature and no cloud points were detected. The values for the CMC of ATGs with 12 carbon alkyl chains and above were in good agreement with those of corresponding alkyl glucosides. However, lower homologues exhibited significantly smaller CMCs, and the trend of the CMC upon the chain length did not match common surfactant behavior. This deviation may be related to the triazole that links the two surfactant domains.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  10. Aishah Faiqah Mohd Yusof, Prabhakaran P, Nur Diyana Azli, Norrakiah Abdullah Sani, Wan Syaidatul Aqma
    Sains Malaysiana, 2017;46:903-908.
    Pacifier nipples are in permanent contact with saliva and with the oral microflora therefore, act as a favoured site for the growth of biofilms. This research was conducted to identify the bacterial biofilms that has been found on the pacifiers that collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant formula milk. Pacifiers collected were analysed to obtain colony forming unit (CFU) and isolated bacteria were identified using several biochemical tests according to Bergey's Manual. Biofilm assay of three Cronobacter sp. were conducted using 24 wells microtiter plate and stained with 1% of crystal violet solution at different time interval: 6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric substances (EPS) analysis was done to identify percentage of carbohydrate and protein content by using phenol sulphuric acid method and Bradford method, respectively. The results obtained showed that the normal microflora bacteria were the most abundant microorganisms that were found on the pacifier with the main genus isolated was Staphylococcus sp., Enterobacteriaceae sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter sakazakii formed a strong biofilms after 18 h, with carbohydrate was identified as main component of EPS.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  11. Nur Anisah Johari, Siti Sarah Diyana Amran, Alya Nur Athirah Kamaruzzaman, Che Amira Izzati Che Man, Mohd Fakharul Zaman Raja Yahya
    Science Letters, 2020;14(2):34-46.
    MyJurnal
    Biofilm is a microbial community that attaches to a surface and is enclosed in extracellular polymeric substance (EPS) matrix. Formation of biofilm often develops resistance towards a wide spectrum of antimicrobial agents. Since the biofilm-mediated diseases are commonly difficult to treat, there is need to find new anti-biofilm agent. The studies on anti-biofilm activities of plant species have received a great deal of attention over the last few decades. In Malaysia, plant species have been used as alternatives to the conventional antimicrobial therapy. Several Malaysian plant species are known to control biofilm infection by inhibition of quorum sensing pathway, disruption of EPS matrix, alteration of cell permeability and reduction in cell surface hydrophobicity. This review demonstrates that Malaysian plant species may become excellent therapeutic agents in combating the biofilm infection.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  12. Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DN, Shokouhimehr M, et al.
    Sci Rep, 2021 Feb 11;11(1):3641.
    PMID: 33574397 DOI: 10.1038/s41598-020-80886-x
    In this work, we proposed a facile approach to fabricate a superhydrophobic surface for anti-icing performance in terms of adhesive strength and freezing time. A hierarchical structure was generated on as-received Al plates using a wet etching method and followed with a low energy chemical compound coating. Surfaces after treatment exhibited the great water repellent properties with a high contact angle and extremely low sliding angle. An anti-icing investigation was carried out by using a custom-built apparatus and demonstrated the expected low adhesion and freezing time for icephobic applications. In addition, we proposed a model for calculating the freezing time. The experimented results were compared with theoretical calculation and demonstrated the good agreement, illustrating the importance of theoretical contribution in design icephobic surfaces. Therefore, this study provides a guideline for the understanding of icing phenomena and designing of icephobic surfaces.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  13. Salimi E, Ghaee A, Ismail AF, Karimi M
    Int J Biol Macromol, 2018 Sep;116:364-377.
    PMID: 29709537 DOI: 10.1016/j.ijbiomac.2018.04.137
    The main aim of this study was to evaluate the suitability of sulfonated alginate as a modifying agent to enhance the hemocompatibility of self-fabricated polyethersulfone (PES) hollow fiber membrane for blood detoxification. Sodium alginate was sulfonated with a degree of 0.6 and immobilized on the membrane via surface amination and using glutaraldehyde as cross-linking agent. Coating layer not only improved the membrane surface hydrophilicity, but also induced -39.2 mV negative charges on the surface. Water permeability of the modified membrane was enhanced from 67 to 95 L/m2·h·bar and flux recovery ratio increased more than 2-fold. Furthermore, the modified membrane presented higher platelet adhesion resistance (reduced by more than 90%) and prolonged coagulation time (35 s for APTT and 14 s for PT) in comparison with the pristine PES hollow fiber membrane, which verified the improved anti-thrombogenicity of the modified membrane. On the other hand, obtained membrane after 3 h coating could remove up-to 60% of the uremic toxins. According to the obtained data, sulfonated alginate can be a promising modifying agent for the future blood-contacting membrane and specially blood purification issues.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  14. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  15. Ahmad AL, Sugumaran J, Shoparwe NF
    Membranes (Basel), 2018 Dec 14;8(4).
    PMID: 30558199 DOI: 10.3390/membranes8040131
    In this study, the antifouling properties of polyethersulfone (PES) membranes blended with different amounts of ZnO nanoparticles and a fixed ratio of N-methyl-2-pyrrolidone (NMP)-acetone mixture as a solvent were investigated. The properties and performance of the fabricated membranes were examined in terms of hydrophilicity, porosity, pore size, surface and cross-section image using scanning electron microscopy (SEM), surface roughness using atomic force microscopy (AFM), pure water flux, and humic acid filtration. Addition of ZnO as expected was found to improve the hydrophilicity as well as to encourage pore formation. However, the agglomeration of ZnO at a higher concentration cannot be avoided even when dissolved in a mixed solvent. The presence of highly volatile acetone contributed to the tight skin layer of the membrane which shows remarkable antifouling ability with the highest flux recovery ratio and negligible irreversible fouling. ZnO NPs in acetone/NMP mixed solvent shows an improvement in flux and rejection, but, the fouling resistance was moderate compared to the pristine membrane.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  16. Abdul Wahab Mohammad, Lim YP, Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, Hilal N
    Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability to generate high-resolution 3D images at a subnanometer range without sample pretreatment. In this paper, the use of AFM to characterize the membrane roughness is presented for commercial and self-prepared membranes for specific applications. Surface roughness has been regarded as one of the most important surface properties, and has significant effect in membrane permeability and fouling behaviour. Several scan areas were used to compare surface roughness for different membrane samples. Characterization of the surfaces was achieved by measuring the average roughness (Ra) and root mean square roughness (Rrms) of the membrane. AFM image shows that the membrane surface was composed entirely of peaks and valleys. Surface roughness is substantially greater for commercial available hydrophobic membranes, in contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the membrane roughness.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  17. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al.
    Int J Mol Sci, 2021 Nov 30;22(23).
    PMID: 34884787 DOI: 10.3390/ijms222312984
    Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  18. Sreekantan S, Hassan M, Sundera Murthe S, Seeni A
    Polymers (Basel), 2020 Dec 18;12(12).
    PMID: 33352856 DOI: 10.3390/polym12123034
    A sustainable super-hydrophobic coating composed of silica from palm oil fuel ash (POFA) and polydimethylsiloxane (PDMS) was synthesised using isopropanol as a solvent and coated on a glass substrate. FESEM and AFM analyses were conducted to study the surface morphology of the coating. The super-hydrophobicity of the material was validated through goniometry, which showed a water contact angle of 151°. Cytotoxicity studies were conducted by assessing the cell viability and cell morphology of mouse fibroblast cell line (L929) and hamster lung fibroblast cell line (V79) via tetrazolium salt 3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic methods, respectively. The clonogenic assay was performed on cell line V79 and the cell proliferation assay was performed on cell line L929. Both results validate that the toxicity of PDMS: SS coatings is dependent on the concentration of the super-hydrophobic coating. The results also indicate that concentrations above 12.5 mg/mL invariably leads to cell toxicity. These results conclusively support the possible utilisation of the synthesised super-hydrophobic coating for biomedical applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  19. Tan JM, Karthivashan G, Abd Gani S, Fakurazi S, Hussein MZ
    J Mater Sci Mater Med, 2016 Feb;27(2):26.
    PMID: 26704543 DOI: 10.1007/s10856-015-5635-8
    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  20. Kabir MZ, Roslan AA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2020 Jun;38(9):2693-2703.
    PMID: 31271347 DOI: 10.1080/07391102.2019.1640133
    Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS-HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS-HSA system was predicted from the Stern-Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48 × 104 M-1). Thermodynamic data revealed that the MNS-HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal's interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein's secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein's fluorophores, upon MNS binding. Significant improvement in the protein's thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow's site I) of the protein.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links