Displaying publications 1 - 20 of 113 in total

Abstract:
Sort:
  1. Ab Hamid F, Che Azemin MZ, Salam A, Aminuddin A, Mohd Daud N, Zahari I
    Curr Eye Res, 2016 Jun;41(6):823-31.
    PMID: 26268475 DOI: 10.3109/02713683.2015.1056375
    PURPOSE: The goal of this study was to provide the empirical evidence of fractal dimension as an indirect measure of retinal vasculature density.

    MATERIALS AND METHODS: Two hundred retinal samples of right eye [57.0% females (n = 114) and 43.0% males (n = 86)] were selected from baseline visit. A custom-written software was used for vessel segmentation. Vessel segmentation is the process of transforming two-dimensional color images into binary images (i.e. black and white pixels). The circular area of approximately 2.6 optic disc radii surrounding the center of optic disc was cropped. The non-vessels fragments were removed. FracLac was used to measure the fractal dimension and vessel density of retinal vessels.

    RESULTS: This study suggested that 14.1% of the region of interest (i.e. approximately 2.6 optic disk radii) comprised retinal vessel structure. Using correlation analysis, vessel density measurement and fractal dimension estimation are linearly and strongly correlated (R = 0.942, R(2) = 0.89, p 

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  2. Abas FS, Shana'ah A, Christian B, Hasserjian R, Louissaint A, Pennell M, et al.
    Cytometry A, 2017 06;91(6):609-621.
    PMID: 28110507 DOI: 10.1002/cyto.a.23049
    The advance of high resolution digital scans of pathology slides allowed development of computer based image analysis algorithms that may help pathologists in IHC stains quantification. While very promising, these methods require further refinement before they are implemented in routine clinical setting. Particularly critical is to evaluate algorithm performance in a setting similar to current clinical practice. In this article, we present a pilot study that evaluates the use of a computerized cell quantification method in the clinical estimation of CD3 positive (CD3+) T cells in follicular lymphoma (FL). Our goal is to demonstrate the degree to which computerized quantification is comparable to the practice of estimation by a panel of expert pathologists. The computerized quantification method uses entropy based histogram thresholding to separate brown (CD3+) and blue (CD3-) regions after a color space transformation. A panel of four board-certified hematopathologists evaluated a database of 20 FL images using two different reading methods: visual estimation and manual marking of each CD3+ cell in the images. These image data and the readings provided a reference standard and the range of variability among readers. Sensitivity and specificity measures of the computer's segmentation of CD3+ and CD- T cell are recorded. For all four pathologists, mean sensitivity and specificity measures are 90.97 and 88.38%, respectively. The computerized quantification method agrees more with the manual cell marking as compared to the visual estimations. Statistical comparison between the computerized quantification method and the pathologist readings demonstrated good agreement with correlation coefficient values of 0.81 and 0.96 in terms of Lin's concordance correlation and Spearman's correlation coefficient, respectively. These values are higher than most of those calculated among the pathologists. In the future, the computerized quantification method may be used to investigate the relationship between the overall architectural pattern (i.e., interfollicular vs. follicular) and outcome measures (e.g., overall survival, and time to treatment). © 2017 International Society for Advancement of Cytometry.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  3. Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V
    J Med Syst, 2018 Feb 17;42(4):58.
    PMID: 29455440 DOI: 10.1007/s10916-018-0912-y
    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  4. Abdullah A, Mahmud MR, Maimunah A, Zulfiqar MA, Saim L, Mazlan R
    Ann Acad Med Singap, 2003 Jul;32(4):442-5.
    PMID: 12968546
    INTRODUCTION: Accurate preoperative imaging of the temporal bone in patients receiving cochlear implants is important. High resolution computed tomography (HRCT) and magnetic resonance (MR) imaging are the 2 preoperative imaging modalities that provide critical information on abnormalities of the otic capsule, pneumatisation of the mastoid, middle ear abnormalities, cochlear ducts patency and presence of cochlear nerve.

    MATERIALS AND METHODS: The HRCT and MR imaging in 46 cochlear implant patients in our department were reviewed.

    RESULTS: Majority of our patients [34 patients (73.9%)] showed normal HRCT of the temporal bone; 5 (10.9%) patients had labyrinthitis ossificans, 2 (4.3%) had Mondini's abnormality and 2 (4.3%) had middle ear effusion. One patient each had high jugular bulb, hypoplasia of the internal auditory canal and single cochlear cavity, respectively.

    CONCLUSION: The above findings contribute significantly to our surgical decisions regarding candidacy for surgery, side selection and surgical technique in cochlear implantation.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  5. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Imaging Radiat Oncol, 2016 Aug;60(4):459-68.
    PMID: 27241506 DOI: 10.1111/1754-9485.12473
    The aim of this systematic review is to evaluate the radiation dose reduction achieved using iterative reconstruction (IR) compared to filtered back projection (FBP) in coronary CT angiography (CCTA) and assess the impact on diagnostic image quality. A systematic search of seven electronic databases was performed to identify all studies using a developed keywords strategy. A total of 14 studies met the criteria and were included in a review analysis. The results showed that there was a significant reduction in radiation dose when using IR compared to FBP (P  0.05). The mean ± SD difference of image noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were 1.05 ± 1.29 HU, 0.88 ± 0.56 and 0.63 ± 1.83 respectively. The mean ± SD percentages of overall image quality scores were 71.79 ± 12.29% (FBP) and 67.31 ± 22.96% (IR). The mean ± SD percentages of coronary segment analysis were 95.43 ± 2.57% (FBP) and 97.19 ± 2.62% (IR). In conclusion, this review analysis shows that CCTA with the use of IR leads to a significant reduction in radiation dose as compared to the use of FBP. Diagnostic image quality of IR at reduced dose (30-41%) is comparable to FBP at standard dose in the diagnosis of CAD.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  6. Abisha S, Mutawa AM, Murugappan M, Krishnan S
    PLoS One, 2023;18(4):e0284021.
    PMID: 37018344 DOI: 10.1371/journal.pone.0284021
    Different diseases are observed in vegetables, fruits, cereals, and commercial crops by farmers and agricultural experts. Nonetheless, this evaluation process is time-consuming, and initial symptoms are primarily visible at microscopic levels, limiting the possibility of an accurate diagnosis. This paper proposes an innovative method for identifying and classifying infected brinjal leaves using Deep Convolutional Neural Networks (DCNN) and Radial Basis Feed Forward Neural Networks (RBFNN). We collected 1100 images of brinjal leaf disease that were caused by five different species (Pseudomonas solanacearum, Cercospora solani, Alternaria melongenea, Pythium aphanidermatum, and Tobacco Mosaic Virus) and 400 images of healthy leaves from India's agricultural form. First, the original plant leaf is preprocessed by a Gaussian filter to reduce the noise and improve the quality of the image through image enhancement. A segmentation method based on expectation and maximization (EM) is then utilized to segment the leaf's-diseased regions. Next, the discrete Shearlet transform is used to extract the main features of the images such as texture, color, and structure, which are then merged to produce vectors. Lastly, DCNN and RBFNN are used to classify brinjal leaves based on their disease types. The DCNN achieved a mean accuracy of 93.30% (with fusion) and 76.70% (without fusion) compared to the RBFNN (82%-without fusion, 87%-with fusion) in classifying leaf diseases.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  7. Abu A, Susan LL, Sidhu AS, Dhillon SK
    BMC Bioinformatics, 2013;14:48.
    PMID: 23398696 DOI: 10.1186/1471-2105-14-48
    Digitised monogenean images are usually stored in file system directories in an unstructured manner. In this paper we propose a semantic representation of these images in the form of a Monogenean Haptoral Bar Image (MHBI) ontology, which are annotated with taxonomic classification, diagnostic hard part and image properties. The data we used are basically of the monogenean species found in fish, thus we built a simple Fish ontology to demonstrate how the host (fish) ontology can be linked to the MHBI ontology. This will enable linking of information from the monogenean ontology to the host species found in the fish ontology without changing the underlying schema for either of the ontologies.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  8. Abu A, Leow LK, Ramli R, Omar H
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):505.
    PMID: 28155645 DOI: 10.1186/s12859-016-1362-5
    BACKGROUND: Taxonomists frequently identify specimen from various populations based on the morphological characteristics and molecular data. This study looks into another invasive process in identification of house shrew (Suncus murinus) using image analysis and machine learning approaches. Thus, an automated identification system is developed to assist and simplify this task. In this study, seven descriptors namely area, convex area, major axis length, minor axis length, perimeter, equivalent diameter and extent which are based on the shape are used as features to represent digital image of skull that consists of dorsal, lateral and jaw views for each specimen. An Artificial Neural Network (ANN) is used as classifier to classify the skulls of S. murinus based on region (northern and southern populations of Peninsular Malaysia) and sex (adult male and female). Thus, specimen classification using Training data set and identification using Testing data set were performed through two stages of ANNs.

    RESULTS: At present, the classifier used has achieved an accuracy of 100% based on skulls' views. Classification and identification to regions and sexes have also attained 72.5%, 87.5% and 80.0% of accuracy for dorsal, lateral, and jaw views, respectively. This results show that the shape characteristic features used are substantial because they can differentiate the specimens based on regions and sexes up to the accuracy of 80% and above. Finally, an application was developed and can be used for the scientific community.

    CONCLUSIONS: This automated system demonstrates the practicability of using computer-assisted systems in providing interesting alternative approach for quick and easy identification of unknown species.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  9. Acharya UR, Raghavendra U, Koh JEW, Meiburger KM, Ciaccio EJ, Hagiwara Y, et al.
    Comput Methods Programs Biomed, 2018 Nov;166:91-98.
    PMID: 30415722 DOI: 10.1016/j.cmpb.2018.10.006
    BACKGROUND AND OBJECTIVE: Liver fibrosis is a type of chronic liver injury that is characterized by an excessive deposition of extracellular matrix protein. Early detection of liver fibrosis may prevent further growth toward liver cirrhosis and hepatocellular carcinoma. In the past, the only method to assess liver fibrosis was through biopsy, but this examination is invasive, expensive, prone to sampling errors, and may cause complications such as bleeding. Ultrasound-based elastography is a promising tool to measure tissue elasticity in real time; however, this technology requires an upgrade of the ultrasound system and software. In this study, a novel computer-aided diagnosis tool is proposed to automatically detect and classify the various stages of liver fibrosis based upon conventional B-mode ultrasound images.

    METHODS: The proposed method uses a 2D contourlet transform and a set of texture features that are efficiently extracted from the transformed image. Then, the combination of a kernel discriminant analysis (KDA)-based feature reduction technique and analysis of variance (ANOVA)-based feature ranking technique was used, and the images were then classified into various stages of liver fibrosis.

    RESULTS: Our 2D contourlet transform and texture feature analysis approach achieved a 91.46% accuracy using only four features input to the probabilistic neural network classifier, to classify the five stages of liver fibrosis. It also achieved a 92.16% sensitivity and 88.92% specificity for the same model. The evaluation was done on a database of 762 ultrasound images belonging to five different stages of liver fibrosis.

    CONCLUSIONS: The findings suggest that the proposed method can be useful to automatically detect and classify liver fibrosis, which would greatly assist clinicians in making an accurate diagnosis.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  10. Acharya UR, Faust O, Ciaccio EJ, Koh JEW, Oh SL, Tan RS, et al.
    Comput Methods Programs Biomed, 2019 Jul;175:163-178.
    PMID: 31104705 DOI: 10.1016/j.cmpb.2019.04.018
    BACKGROUND AND OBJECTIVE: Complex fractionated atrial electrograms (CFAE) may contain information concerning the electrophysiological substrate of atrial fibrillation (AF); therefore they are of interest to guide catheter ablation treatment of AF. Electrogram signals are shaped by activation events, which are dynamical in nature. This makes it difficult to establish those signal properties that can provide insight into the ablation site location. Nonlinear measures may improve information. To test this hypothesis, we used nonlinear measures to analyze CFAE.

    METHODS: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures.

    RESULTS: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data.

    CONCLUSIONS: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  11. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  12. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2012 Sep;4(3):161-72.
    PMID: 23292689 DOI: 10.1007/s12539-012-0132-y
    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  13. Ahmad Fadzil MH, Prakasa E, Asirvadam VS, Nugroho H, Affandi AM, Hussein SH
    Comput Biol Med, 2013 Nov;43(11):1987-2000.
    PMID: 24054912 DOI: 10.1016/j.compbiomed.2013.08.009
    Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement).
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  14. Ahmad Fadzil MH, Izhar LI, Nugroho HA
    Comput Biol Med, 2010 Jul;40(7):657-64.
    PMID: 20573343 DOI: 10.1016/j.compbiomed.2010.05.004
    Monitoring FAZ area enlargement enables physicians to monitor progression of the DR. At present, it is difficult to discern the FAZ area and to measure its enlargement in an objective manner using digital fundus images. A semi-automated approach for determination of FAZ using color images has been developed. Here, a binary map of retinal blood vessels is computer generated from the digital fundus image to determine vessel ends and pathologies surrounding FAZ for area analysis. The proposed method is found to achieve accuracies from 66.67% to 98.69% compared to accuracies of 18.13-95.07% obtained by manual segmentation of FAZ regions from digital fundus images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  15. Ahmad Fauzi MF, Khansa I, Catignani K, Gordillo G, Sen CK, Gurcan MN
    Comput Biol Med, 2015 May;60:74-85.
    PMID: 25756704 DOI: 10.1016/j.compbiomed.2015.02.015
    An estimated 6.5 million patients in the United States are affected by chronic wounds, with more than US$25 billion and countless hours spent annually for all aspects of chronic wound care. There is a need for an intelligent software tool to analyze wound images, characterize wound tissue composition, measure wound size, and monitor changes in wound in between visits. Performed manually, this process is very time-consuming and subject to intra- and inter-reader variability. In this work, our objective is to develop methods to segment, measure and characterize clinically presented chronic wounds from photographic images. The first step of our method is to generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the segmentation process using either optimal thresholding or region growing. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively; while the white probability map is to detect the white label card for measurement calibration purposes. The innovative aspects of this work include defining a four-dimensional probability map specific to wound characteristics, a computationally efficient method to segment wound images utilizing the probability map, and auto-calibration of wound measurements using the content of the image. These methods were applied to 80 wound images, captured in a clinical setting at the Ohio State University Comprehensive Wound Center, with the ground truth independently generated by the consensus of at least two clinicians. While the mean inter-reader agreement between the readers varied between 67.4% and 84.3%, the computer achieved an average accuracy of 75.1%.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  16. Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P
    Comput Methods Programs Biomed, 2018 Jul;161:145-172.
    PMID: 29852957 DOI: 10.1016/j.cmpb.2018.04.013
    BACKGROUND AND OBJECTIVE: Diagnosis as the initial step of medical practice, is one of the most important parts of complicated clinical decision making which is usually accompanied with the degree of ambiguity and uncertainty. Since uncertainty is the inseparable nature of medicine, fuzzy logic methods have been used as one of the best methods to decrease this ambiguity. Recently, several kinds of literature have been published related to fuzzy logic methods in a wide range of medical aspects in terms of diagnosis. However, in this context there are a few review articles that have been published which belong to almost ten years ago. Hence, we conducted a systematic review to determine the contribution of utilizing fuzzy logic methods in disease diagnosis in different medical practices.

    METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.

    RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.

    CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  17. Al-Faris AQ, Ngah UK, Isa NA, Shuaib IL
    J Digit Imaging, 2014 Feb;27(1):133-44.
    PMID: 24100762 DOI: 10.1007/s10278-013-9640-5
    In this paper, an automatic computer-aided detection system for breast magnetic resonance imaging (MRI) tumour segmentation will be presented. The study is focused on tumour segmentation using the modified automatic seeded region growing algorithm with a variation of the automated initial seed and threshold selection methodologies. Prior to that, some pre-processing methodologies are involved. Breast skin is detected and deleted using the integration of two algorithms, namely the level set active contour and morphological thinning. The system is applied and tested on 40 test images from the RIDER breast MRI dataset, the results are evaluated and presented in comparison to the ground truths of the dataset. The analysis of variance (ANOVA) test shows that there is a statistically significance in the performance compared to the previous segmentation approaches that have been tested on the same dataset where ANOVA p values for the evaluation measures' results are less than 0.05, such as: relative overlap (p = 0.0002), misclassification rate (p = 0.045), true negative fraction (p = 0.0001) and sum of true volume fraction (p = 0.0001).
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  18. Al-Khatib AR, Rajion ZA, Masudi SM, Hassan R, Anderson PJ, Townsend GC
    Orthod Craniofac Res, 2011 Nov;14(4):243-53.
    PMID: 22008304 DOI: 10.1111/j.1601-6343.2011.01529.x
    To investigate tooth size and dental arch dimensions in Malays using a stereophotogrammetric system.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  19. Al-Masni MA, Lee S, Al-Shamiri AK, Gho SM, Choi YH, Kim DH
    Comput Biol Med, 2023 Feb;153:106553.
    PMID: 36641933 DOI: 10.1016/j.compbiomed.2023.106553
    Patient movement during Magnetic Resonance Imaging (MRI) scan can cause severe degradation of image quality. In Susceptibility Weighted Imaging (SWI), several echoes are typically measured during a single repetition period, where the earliest echoes show less contrast between various tissues, while the later echoes are more susceptible to artifacts and signal dropout. In this paper, we propose a knowledge interaction paradigm that jointly learns feature details from multiple distorted echoes by sharing their knowledge with unified training parameters, thereby simultaneously reducing motion artifacts of all echoes. This is accomplished by developing a new scheme that boosts a Single Encoder with Multiple Decoders (SEMD), which assures that the generated features not only get fused but also learned together. We called the proposed method Knowledge Interaction Learning between Multi-Echo data (KIL-ME-based SEMD). The proposed KIL-ME-based SEMD allows to share information and gain an understanding of the correlations between the multiple echoes. The main purpose of this work is to correct the motion artifacts and maintain image quality and structure details of all motion-corrupted echoes towards generating high-resolution susceptibility enhanced contrast images, i.e., SWI, using a weighted average of multi-echo motion-corrected acquisitions. We also compare various potential strategies that might be used to address the problem of reducing artifacts in multi-echoes data. The experimental results demonstrate the feasibility and effectiveness of the proposed method, reducing the severity of motion artifacts and improving the overall clinical image quality of all echoes with their associated SWI maps. Significant improvement of image quality is observed using both motion-simulated test data and actual volunteer data with various motion severity strengths. Eventually, by enhancing the overall image quality, the proposed network can increase the effectiveness of the physicians' capability to evaluate and correctly diagnose brain MR images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  20. Al-Shabi M, Lan BL, Chan WY, Ng KH, Tan M
    Int J Comput Assist Radiol Surg, 2019 Oct;14(10):1815-1819.
    PMID: 31020576 DOI: 10.1007/s11548-019-01981-7
    PURPOSE: Lung nodules have very diverse shapes and sizes, which makes classifying them as benign/malignant a challenging problem. In this paper, we propose a novel method to predict the malignancy of nodules that have the capability to analyze the shape and size of a nodule using a global feature extractor, as well as the density and structure of the nodule using a local feature extractor.

    METHODS: We propose to use Residual Blocks with a 3 × 3 kernel size for local feature extraction and Non-Local Blocks to extract the global features. The Non-Local Block has the ability to extract global features without using a huge number of parameters. The key idea behind the Non-Local Block is to apply matrix multiplications between features on the same feature maps.

    RESULTS: We trained and validated the proposed method on the LIDC-IDRI dataset which contains 1018 computed tomography scans. We followed a rigorous procedure for experimental setup, namely tenfold cross-validation, and ignored the nodules that had been annotated by

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links