Displaying publications 1 - 20 of 169 in total

Abstract:
Sort:
  1. Zubair M, Abdullah MZ, Ahmad KA
    Comput Math Methods Med, 2013;2013:727362.
    PMID: 23983811 DOI: 10.1155/2013/727362
    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies.
    Matched MeSH terms: Imaging, Three-Dimensional/statistics & numerical data*
  2. Zreaqat M, Hassan R, Halim AS
    Int J Oral Maxillofac Surg, 2012 Jun;41(6):783-8.
    PMID: 22424709 DOI: 10.1016/j.ijom.2012.02.003
    This comparative cross-sectional study assessed the facial surface dimensions of a group of Malay children with unilateral cleft lip and palate (UCLP) and compared them with a control group. 30 Malay children with UCLP aged 8-10 years and 30 unaffected age-matched children were voluntarily recruited from the Orthodontic Specialist Clinic in Hospital Universiti Sains Malaysia (HUSM). For the cleft group, lip and palate were repaired and assessment was performed prior to alveolar bone grafting and orthodontic treatment. The investigation was carried out using 3D digital stereophotogrammetry. 23 variables and two ratios were compared three-dimensionally between both groups. Statistically significant dimensional differences (P<0.05) were found between the UCLP Malay group and the control group mainly in the nasolabial region. These include increased alar base and alar base root width, shorter upper lip length, and increased nose base/mouth width ratio in the UCLP group. There were significant differences between the facial surface morphology of UCLP Malay children and control subjects. Particular surgical procedures performed during primary surgeries may contribute to these differences and negatively affect the surgical outcome.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  3. Zheng S, Rahmat RWO, Khalid F, Nasharuddin NA
    PeerJ Comput Sci, 2019;5:e236.
    PMID: 33816889 DOI: 10.7717/peerj-cs.236
    As the technology for 3D photography has developed rapidly in recent years, an enormous amount of 3D images has been produced, one of the directions of research for which is face recognition. Improving the accuracy of a number of data is crucial in 3D face recognition problems. Traditional machine learning methods can be used to recognize 3D faces, but the face recognition rate has declined rapidly with the increasing number of 3D images. As a result, classifying large amounts of 3D image data is time-consuming, expensive, and inefficient. The deep learning methods have become the focus of attention in the 3D face recognition research. In our experiment, the end-to-end face recognition system based on 3D face texture is proposed, combining the geometric invariants, histogram of oriented gradients and the fine-tuned residual neural networks. The research shows that when the performance is evaluated by the FRGC-v2 dataset, as the fine-tuned ResNet deep neural network layers are increased, the best Top-1 accuracy is up to 98.26% and the Top-2 accuracy is 99.40%. The framework proposed costs less iterations than traditional methods. The analysis suggests that a large number of 3D face data by the proposed recognition framework could significantly improve recognition decisions in realistic 3D face scenarios.
    Matched MeSH terms: Imaging, Three-Dimensional
  4. Zakaria Z, Abdul Rahim R, Mansor MS, Yaacob S, Ayub NM, Muji SZ, et al.
    Sensors (Basel), 2012;12(6):7126-56.
    PMID: 22969341 DOI: 10.3390/s120607126
    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology.
    Matched MeSH terms: Imaging, Three-Dimensional/instrumentation*
  5. Zain NM, Chelliah KK
    Asian Pac J Cancer Prev, 2014;15(3):1327-31.
    PMID: 24606460
    BACKGROUND: Electrical impedance tomography (EIT) is a new non-invasive, mobile screening method which does not use ionizing radiation to the human breast; allows conducting quantitative assessment of the images besides the visual interpretation. The aim of this study was to correlate the quantitative assessment and visual interpretation of breast electrical impedance tomographs and associated factors.

    MATERIALS AND METHODS: One hundred and fifty mammography patients above 40 years and undergoing EIT were chosen using convenient sampling. Visual interpretation of the images was carried out by a radiologist with minimum of three years experience using the breast imaging - electrical impedance (BI-EIM) classification for detection of abnormalities. A set of thirty blinded EIT images were reinterpreted to determine the intra-rater reliability using kappa. Quantitative assessment was by comparison of the breast average electric conductivity with the norm and correlations with visual interpretation of the images were determined using Chi-square. One-way ANOVA was used to compare the mean electrical conductivity between groups and t-test was used for comparisons with pre-existing Caucasians statistics. Independent t-tests were applied to compare the mean electrical conductivity of women with factors like exogenous hormone use and family history of breast cancer.

    RESULTS: The mean electrical conductivity of Malaysian women was significantly lower than that of Caucasians (p<0.05). Quantitative assessment of electrical impedance tomography was significantly related with visual interpretation of images of the breast (p<0.05).

    CONCLUSIONS: Quantitative assessment of electrical impedance tomography images was significantly related with visual interpretation.

    Matched MeSH terms: Imaging, Three-Dimensional
  6. Yew CC, Rahman SA, Alam MK
    BMC Pediatr, 2015;15:169.
    PMID: 26546159 DOI: 10.1186/s12887-015-0495-4
    The Temporomandibular Joint (TMJ) ankylosis in child is rare and yet the causes still remain unclear. This condition that affects the feeding and possible airway obstruction do not only worry the parents, but also possesses as a great challenge to the surgeons. Furthermore, it interferes with the facial skeletal and dento-alveolar development in the on growing child.
    Matched MeSH terms: Imaging, Three-Dimensional
  7. Yasir SF, Jani J, Mukri M
    Data Brief, 2019 Jun;24:103821.
    PMID: 30976635 DOI: 10.1016/j.dib.2019.103821
    This data illustration the similarity and accuracy of two subsurface profile analysis software which is RES2DINV and VOXLER. Electrical resistivity imaging methods was conducted as a geophysical technique to get subsurface profile were borehole had previously been made in the same locations. The General Department of Geoscience (JMG) conducted the drilling of the borehole in three locations which is Kampung Bangkahulu, Gemas, Kampung Semerbok, Rembau and Felda Bukit Rokan Utara. The 2D resistivity image from RES2DINV and the 3D image from VOXLER was highly matching the subsurface profile compared with borehole data log. The depth of the resistivity was 76.8, 87.2 and 39.4 respectively for the sites. This two software gave more clearly interpreted result for investigate the sub ground and geological formations.
    Matched MeSH terms: Imaging, Three-Dimensional
  8. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  9. Yap HJ, Taha Z, Dawal SZ, Chang SW
    PLoS One, 2014;9(10):e109692.
    PMID: 25360663 DOI: 10.1371/journal.pone.0109692
    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
    Matched MeSH terms: Imaging, Three-Dimensional
  10. Yap Abdullah J, Manaf Abdullah A, Zaim S, Hadi H, Husein A, Ahmad Rajion Z, et al.
    Proc Inst Mech Eng H, 2024 Jan;238(1):55-62.
    PMID: 37990963 DOI: 10.1177/09544119231212034
    This study aimed to compare the 3D skull models reconstructed from computed tomography (CT) images using three different open-source software with a commercial software as a reference. The commercial Mimics v17.0 software was used to reconstruct the 3D skull models from 58 subjects. Next, two open-source software, MITK Workbench 2016.11, 3D Slicer 4.8.1 and InVesalius 3.1 were used to reconstruct the 3D skull models from the same subjects. All four software went through similar steps in 3D reconstruction process. The 3D skull models from the commercial and open-source software were exported in standard tessellation language (STL) format into CloudCompare v2.8 software and superimposed for geometric analyses. Hausdorff distance (HD) analysis demonstrated the average points distance of Mimics versus MITK was 0.25 mm. Meanwhile, for Mimics versus 3D Slicer and Mimics versus InVesalius, there was almost no differences between the two superimposed 3D skull models with average points distance of 0.01 mm. Based on Dice similarity coefficient (DSC) analysis, the similarity between Mimics versus MITK, Mimics versus 3D Slicer and Mimics versus InVesalius were 94.1, 98.8 and 98.3%, respectively. In conclusion, this study confirmed that the alternative open-source software, MITK, 3D Slicer and InVesalius gave comparable results in 3D reconstruction of skull models compared to the commercial gold standard Mimics software. This open-source software could possibly be used for pre-operative planning in cranio-maxillofacial cases and for patient management in the hospitals or institutions with limited budget.
    Matched MeSH terms: Imaging, Three-Dimensional*
  11. Wong SC, Nawawi O, Ramli N, Abd Kadir KA
    Acad Radiol, 2012 Jun;19(6):701-7.
    PMID: 22578227 DOI: 10.1016/j.acra.2012.02.012
    The aim of this study was to compare conventional two-dimensional (2D) digital subtraction angiography (DSA) with three-dimensional (3D) rotational DSA in the investigation of intracranial aneurysm in terms of detection, size measurement, neck diameter, neck delineation, and relationship with surrounding vessels. A further aim was to compare radiation dose, contrast volume, and procedural time between the two protocols.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  12. Wee LK, Chai HY, Samsury SR, Mujamil NF, Supriyanto E
    An Acad Bras Cienc, 2012 Dec;84(4):1157-68.
    PMID: 23207710
    Current two-dimensional (2D) ultrasonic marker measurements are inherent with intra- and inter-observer variability limitations. The objective of this paper is to investigate the performance of conventional 2D ultrasonic marker measurements and proposed programmable interactive three-dimensional (3D) marker evaluation. This is essentially important to analyze that the measurement on 3D volumetric measurement possesses higher impact and reproducibility vis-à-vis 2D measurement. Twenty three cases of prenatal ultrasound examination were obtained from collaborating hospital after Ethical Committee's approval. The measured 2D ultrasonic marker is Nuchal Translucency or commonly abbreviated as NT. Descriptive analysis of both 2D and 3D ultrasound measurement were calculated. Three trial measurements were taken for each method. Both data were tested with One-Sample Kolmogorov-Smirnov Test and results indicate that markers measurements were distributed normally with significant parametric values at 0.621 and 0.596 respectively. Computed mean and standard deviation for both measurement methods are 1.4495 ± 0.46490 (2D) and 1.3561 ± 0.50994 (3D). ANOVA test shows that computerized 3D measurements were found to be insignificantly different from the mean of conventional 2D at the significance level of 0.05. With Pearson's correlation coefficient value or R = 0.861, the result proves strong positive linear correlation between 2D and 3D ultrasonic measurements. Reproducibility and accuracy of 3D ultrasound in NT measurement was significantly increased compared with 2D B-mode ultrasound prenatal assessment. 3D reconstructed imaging has higher clinical values compare to 2D ultrasound images with less diagnostics information.
    Matched MeSH terms: Imaging, Three-Dimensional
  13. Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, et al.
    J Surg Educ, 2014 Mar-Apr;71(2):193-7.
    PMID: 24602709 DOI: 10.1016/j.jsurg.2013.08.010
    The traditionally accepted form of training is direct supervision by an expert; however, modern trends in medicine have made this progressively more difficult to achieve. A 3-dimensional printer makes it possible to convert patients imaging data into accurate models, thus allowing the possibility to reproduce models with pathology. This enables a large number of trainees to be trained simultaneously using realistic models simulating actual neurosurgical procedures. The aim of this study was to assess the usefulness of these models in training surgeons to perform standard procedures that require complex techniques and equipment.
    Matched MeSH terms: Imaging, Three-Dimensional
  14. Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, et al.
    Am J Rhinol Allergy, 2012 Sep-Oct;26(5):e132-6.
    PMID: 23168144 DOI: 10.2500/ajra.2012.26.3808
    Surgical navigation systems have been used increasingly in guiding complex ear, nose, and throat surgery. Although these are helpful, they are only beneficial intraoperatively; thus, the novice surgeon will not have the preoperative training or exposure that can be vital in complex procedures. In addition, there is a lack of reliable models to give surgeons hands-on training in performing such procedures.
    Matched MeSH terms: Imaging, Three-Dimensional
  15. Wan Hassan WN, Othman SA, Chan CS, Ahmad R, Ali SN, Abd Rohim A
    Am J Orthod Dentofacial Orthop, 2016 Nov;150(5):886-895.
    PMID: 27871715 DOI: 10.1016/j.ajodo.2016.04.021
    INTRODUCTION: In this study we aimed to compare measurements on plaster models using a digital caliper, and on 3-dimensional (3D) digital models, produced using a structured-light scanner, using 3D software.

    METHODS: Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots.

    RESULTS: Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar.

    CONCLUSIONS: Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable.

    Matched MeSH terms: Imaging, Three-Dimensional
  16. Wan Ab Naim WN, Ganesan P, Al Abed A, Lim E
    PMID: 23365977 DOI: 10.1109/EMBC.2012.6346016
    The effects of curvature and tapering on the flow progression in the aorta were studied using numerical simulations on a realistic geometrical model of the aorta and three different versions of the ideal aorta models. The results showed that tapering increases velocity magnitude and wall shear stress while local curvatures affect the skewness of the velocity profile, the thickness of the boundary layer as well as the recirculation regions. Wall shear stress distribution in the aorta serves as an important determinant in the progression of arterial disease.
    Matched MeSH terms: Imaging, Three-Dimensional
  17. Versiani MA, Ahmed HM, Sousa-Neto MD, De-Deus G, Dummer PM
    Braz Dent J, 2016 Sep-Oct;27(5):589-591.
    PMID: 27982239 DOI: 10.1590/0103-6440201601106
    The relationship of the main foramen to the anatomic root apex has been the subject of several studies. Although they are anatomically close, they rarely coincide, and their distance can vary according to age or tooth type, ranging from 0.2 to 3.0 mm. The aim of this short communication was to evaluate the distance between the main foramen of independent middle mesial canals (MMCs) and the anatomical mesial root apex of mandibular first molars using the micro-computed tomography. Twenty-five mandibular first molars with MMCs were scanned (resolution of 9.9 µm), and the distance from its main foramen to the anatomical apex was evaluated. Overall, the distance ranged from 0.2 to 2.4 mm; however, in 3 specimens the distance was greater than 3 mm. This report demonstrates that the exit of the main foramen of the MMC varies considerably and could approach a substantial distance from the anatomical apex greater than previously reported in the literature.
    Matched MeSH terms: Imaging, Three-Dimensional
  18. Vairavan N, Tajunisah I, Subrayan V, Waran V
    Orbit, 2009;28(6):442-3.
    PMID: 19929682 DOI: 10.3109/01676830903103365
    Surgical approaches are becoming increasingly minimally invasive, without compromising either safety or ease. Penetrating ocular foreign bodies has traditionally been approached either by intraocular or supraorbital access. We successfully attempted a minimally invasive approach to remove a retrobulbar foreign body under computer-assisted image guidance in a 19-year-old man involved in an industrial mishap.
    Matched MeSH terms: Imaging, Three-Dimensional
  19. Teo BG, Dhillon SK, Lim LH
    PLoS One, 2013;8(10):e77650.
    PMID: 24204903 DOI: 10.1371/journal.pone.0077650
    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  20. Teo BG, Dhillon SK
    BMC Bioinformatics, 2019 Dec 24;20(Suppl 19):658.
    PMID: 31870297 DOI: 10.1186/s12859-019-3210-x
    BACKGROUND: Studying structural and functional morphology of small organisms such as monogenean, is difficult due to the lack of visualization in three dimensions. One possible way to resolve this visualization issue is to create digital 3D models which may aid researchers in studying morphology and function of the monogenean. However, the development of 3D models is a tedious procedure as one will have to repeat an entire complicated modelling process for every new target 3D shape using a comprehensive 3D modelling software. This study was designed to develop an alternative 3D modelling approach to build 3D models of monogenean anchors, which can be used to understand these morphological structures in three dimensions. This alternative 3D modelling approach is aimed to avoid repeating the tedious modelling procedure for every single target 3D model from scratch.

    RESULT: An automated 3D modeling pipeline empowered by an Artificial Neural Network (ANN) was developed. This automated 3D modelling pipeline enables automated deformation of a generic 3D model of monogenean anchor into another target 3D anchor. The 3D modelling pipeline empowered by ANN has managed to automate the generation of the 8 target 3D models (representing 8 species: Dactylogyrus primaries, Pellucidhaptor merus, Dactylogyrus falcatus, Dactylogyrus vastator, Dactylogyrus pterocleidus, Dactylogyrus falciunguis, Chauhanellus auriculatum and Chauhanellus caelatus) of monogenean anchor from the respective 2D illustrations input without repeating the tedious modelling procedure.

    CONCLUSIONS: Despite some constraints and limitation, the automated 3D modelling pipeline developed in this study has demonstrated a working idea of application of machine learning approach in a 3D modelling work. This study has not only developed an automated 3D modelling pipeline but also has demonstrated a cross-disciplinary research design that integrates machine learning into a specific domain of study such as 3D modelling of the biological structures.

    Matched MeSH terms: Imaging, Three-Dimensional
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links