Displaying publications 1 - 20 of 100 in total

Abstract:
Sort:
  1. Liu J, Tan CS, Yu Z, Lan Y, Abell C, Scherman OA
    Adv Mater, 2017 Mar;29(10).
    PMID: 28092128 DOI: 10.1002/adma.201604951
    Biomimetic supramolecular dual networks: By mimicking the structure/function model of titin, integration of dynamic cucurbit[8]uril mediated host-guest interactions with a trace amount of covalent cross-linking leads to hierarchical dual networks with intriguing toughness, strength, elasticity, and energy dissipation properties. Dynamic host-guest interactions can be dissociated as sacrificial bonds and their facile reformation results in self-recovery of the dual network structure as well as its mechanical properties.
    Matched MeSH terms: Imidazoles
  2. Liu J, Tan CSY, Yu Z, Li N, Abell C, Scherman OA
    Adv Mater, 2017 Jun;29(22).
    PMID: 28370560 DOI: 10.1002/adma.201605325
    Recent progress on highly tough and stretchable polymer networks has highlighted the potential of wearable electronic devices and structural biomaterials such as cartilage. For some given applications, a combination of desirable mechanical properties including stiffness, strength, toughness, damping, fatigue resistance, and self-healing ability is required. However, integrating such a rigorous set of requirements imposes substantial complexity and difficulty in the design and fabrication of these polymer networks, and has rarely been realized. Here, we describe the construction of supramolecular polymer networks through an in situ copolymerization of acrylamide and functional monomers, which are dynamically complexed with the host molecule cucurbit[8]uril (CB[8]). High molecular weight, thus sufficient chain entanglement, combined with a small-amount dynamic CB[8]-mediated non-covalent crosslinking (2.5 mol%), yields extremely stretchable and tough supramolecular polymer networks, exhibiting remarkable self-healing capability at room temperature. These supramolecular polymer networks can be stretched more than 100× their original length and are able to lift objects 2000× their weight. The reversible association/dissociation of the host-guest complexes bestows the networks with remarkable energy dissipation capability, but also facile complete self-healing at room temperature. In addition to their outstanding mechanical properties, the networks are ionically conductive and transparent. The CB[8]-based supramolecular networks are synthetically accessible in large scale and exhibit outstanding mechanical properties. They could readily lead to the promising use as wearable and self-healable electronic devices, sensors and structural biomaterials.
    Matched MeSH terms: Imidazoles
  3. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2009 Jun;15(3):95-8.
    PMID: 19402196 DOI: 10.1016/j.anaerobe.2009.01.002
    The aim of this study was to determine the effect of exogenous nitric oxide (NO) on the induction of murine splenic immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in vitro. BALB/c mice were immunized with A. actinomycetemcomitans LPS and a control group was sham-immunized. Spleen cells were obtained, cultured and stimulated with A. actinomycetemcomitans LPS with or without the presence of S-nitroso acetyl-penicillamine (SNAP), a NO donor, and carboxy-PTIO, an NO scavenger. Culture supernatants were assessed for inducible nitric oxide synthase (iNOS) activity, specific IgG subclass levels, and both IFN-gamma and IL-4 levels. The results showed that in A. actinomycetemcomitans LPS-stimulated cells, SNAP enhances iNOS activity but inhibits the levels of specific IgG2a and IFN-gamma suggesting a Th1 response. The effect of SNAP on these immune parameters was ablated by carboxy-PTIO. These results suggest that exogenous NO may suppress the Th1-like immune response of A. actinomycetemcomitans LPS-stimulated murine spleen cells.
    Matched MeSH terms: Imidazoles/pharmacology
  4. Imran FH, Yong CK, Das S, Huei YL
    Anat Cell Biol, 2016 Dec;49(4):273-280.
    PMID: 28127502 DOI: 10.5115/acb.2016.49.4.273
    Superficial temporal artery (STA) based pedicled fascial flap plays a pivotal role in ear reconstruction for microtia patients. There is paucity of literature on the anatomy of the STA in microtia patients. The present study aimed to describe any possible anatomical variations seen in the STA of patients afflicted with microtia. Pre-operative carotid computer tomographic angiography images of patients under the microtia database of Plastic and Reconstructive Surgery Unit at a tertiary medical centre were selected and 3-dimensionally reconstructed. Measurements were made on the 3D reconstructed computed tomographic angiography images of the STA on both the sides of the microtic ear and the non-microtic ear to assess its various anatomical parameters. We managed to obtain a total of 39 computed tomographic angiography images of STAs for analysis. There was a significant difference in the number of main branches of STA between the two groups (P=0.006). The proportion of ears with 2 main branches was higher in the non-microtia group (89.5%) compared to the microtia group (45.0%). A significant difference was found in the STA diameter between the two groups (P=0.012). The mean diameter of STA in the non-microtia group was larger by 0.4 mm. Furthermore, the median angle of STA was larger on the side of the non-microtic ears compared to that of microtic ears by 24.5°, with a P-value of 0.011. The results of the study may be of clinical importance while planning and performing ear reconstructive surgeries using STA based pedicled fascial flaps.
    Matched MeSH terms: Imidazoles
  5. Liu J, Tan CSY, Scherman OA
    Angew Chem Int Ed Engl, 2018 07 16;57(29):8854-8858.
    PMID: 29663607 DOI: 10.1002/anie.201800775
    Supramolecular building blocks, such as cucurbit[n]uril (CB[n])-based host-guest complexes, have been extensively studied at the nano- and microscale as adhesion promoters. Herein, we exploit a new class of CB[n]-threaded highly branched polyrotaxanes (HBP-CB[n]) as aqueous adhesives to macroscopically bond two wet surfaces, including biological tissue, through the formation of CB[8] heteroternary complexes. The dynamic nature of these complexes gives rise to adhesion with remarkable toughness, displaying recovery and reversible adhesion upon mechanical failure at the interface. Incorporation of functional guests, such as azobenzene moieties, allows for stimuli-activated on-demand adhesion/de-adhesion. Macroscopic interfacial adhesion through dynamic host-guest molecular recognition represents an innovative strategy for designing the next generation of functional interfaces, biomedical devices, tissue adhesives, and wound dressings.
    Matched MeSH terms: Imidazoles/chemistry*
  6. Muhammad N, Man Z, Bustam MA, Mutalib MI, Wilfred CD, Rafiq S
    Appl Biochem Biotechnol, 2011 Oct;165(3-4):998-1009.
    PMID: 21720837 DOI: 10.1007/s12010-011-9315-y
    In the present work, the dissolution of bamboo biomass was tested using a number of ionic liquids synthesized in laboratory. It was observed that one of the synthesized amino acid-based ionic liquids, namely 1-ethyl-3-methylimidazolium glycinate, was capable of dissolving the biomass completely. The dissolved biomass was then regenerated using a reconstitute solvent (acetone/water) and was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results were compared to preconditioned bamboo biomass. The regenerated biomass was found to have a more homogenous macrostructure, which indicates that the crystalline form and structure of its cellulose has changed from type Ι to type ΙΙ during the dissolution and regeneration process.
    Matched MeSH terms: Imidazoles/chemistry*
  7. Kee PE, Lan JC, Yim HS, Tan JS, Chow YH, Ng HS
    Appl Biochem Biotechnol, 2020 May;191(1):376-386.
    PMID: 31907777 DOI: 10.1007/s12010-019-03202-y
    Cytochrome c is a small water-soluble protein that is abundantly found in the mitochondrial intermembrane space of microorganism, plants and mammalians. Ionic liquids (ILs)-based aqueous two-phase electrophoresis system (ATPES) was introduced in this study to investigate the partition efficiency of cytochrome c to facilitate subsequent development of two-phase electrophoresis for the separation of cytochrome c from microbial fermentation. The 1-Hexyl-3-methylimidazolium bromide, (C6mim)Br and potassium citrate salt were selected as the phase-forming components. Effects of phase composition; position of electrodes; pH and addition of neutral salt on the partition efficiency of cytochrome c in the ATPES were evaluated. Highest partition coefficient (K = 179.12 ± 0.82) and yield of cytochrome c in top phase (YT = 99.63% ± 0.00) were recorded with IL/salt ATPES composed of 30% (w/w) (C6mim)Br and 20% (w/w) potassium citrate salt of pH 7 and 3.0% (w/w) NaCl addition with anode at the bottom phase and cathode at the top phase. The SDS-PAGE profile revealed that cytochrome c with a molecular weight of 12 kDa was preferably partitioned to the IL-rich top phase. Present findings suggested that the single-step ATPES is a potential separation approach for the recovery of cytochrome c from microbial fermentation. Graphical Abstract.
    Matched MeSH terms: Imidazoles/chemistry*
  8. Hassan BA, Yusoff ZB, Hassali MA, Othman SB, Weiderpass E
    Asian Pac J Cancer Prev, 2012;13(9):4373-8.
    PMID: 23167346
    INTRODUCTION: Hypercalcemia is mainly caused by bone resorption due to either secretion of cytokines including parathyroid hormone-related protein (PTHrP) or bone metastases. However, hypercalcemia may occur in patients with or without bone metastases. The present study aimed to describe the effect of chemotherapy treatment, regimens and doses on calcium levels among breast and lung cancer patients with hypercalcemia.

    METHODS: We carried a review of medical records of breast and lung cancer patients hospitalized in years 2003 and 2009 at Penang General Hospital, a public tertiary care center in Penang Island, north of Malaysia. Patients with hypercalcemia (defined as a calcium level above 10.5 mg/dl) at the time of cancer diagnosis or during cancer treatment had their medical history abstracted, including presence of metastasis, chemotherapy types and doses, calcium levels throughout cancer treatment, and other co-morbidity. The mean calcium levels at first hospitalization before chemotherapy were compared with calcium levels at the end of or at the latest chemotherapy treatment. Statistical analysis was conducted using the Chi-square test for categorical data, logistic regression test for categorical variables, and Spearman correlation test, linear regression and the paired sample t tests for continuous data.

    RESULTS: Of a total 1,023 of breast cancer and 814 lung cancer patients identified, 292 had hypercalcemia at first hospitalization or during cancer treatment (174 breast and 118 lung cancer patients). About a quarter of these patients had advanced stage cancers: 26.4% had mild hypercalcemia (10.5-11.9 mg/dl), 55.5% had moderate (12-12.9 mg/dl), and 18.2% severe hypercalcemia (13-13.9; 14-16 mg/dl). Chemotherapy lowered calcium levels significantly both in breast and lung cancer patients with hypercalcemia; in particular with chemotherapy type 5-flurouracil+epirubicin+cyclophosphamide (FEC) for breast cancer, and gemcitabine+cisplatin in lung cancer.

    CONCLUSION: Chemotherapy decreases calcium levels in breast and lung cancer cases with hypercalcemia at cancer diagnosis, probably by reducing PTHrP levels.

    Matched MeSH terms: Imidazoles/therapeutic use
  9. Tan HM, Chin CM, Chua CB, Gatchalian E, Kongkanand A, Moh CL, et al.
    Asian J Androl, 2008 May;10(3):495-502.
    PMID: 18385912 DOI: 10.1111/j.1745-7262.2008.00388.x
    To evaluate the efficacy and tolerability of vardenafil, a phosphodiesterase type-5 (PDE-5) inhibitor, in men of Asian ethnicity with erectile dysfunction (ED).
    Matched MeSH terms: Imidazoles/adverse effects; Imidazoles/therapeutic use*
  10. Azmi N, Norman C, Spicer CH, Bennett GW
    Behav Pharmacol, 2006 Jun;17(4):357-62.
    PMID: 16914954
    Various lines of evidence suggest a role in cognition for the endogenous neuropeptide, neurotensin, involving an interaction with the central nervous system cholinergic pathways. A preliminary study has shown that central administration of neurotensin enhances spatial and nonspatial working memory in the presence of scopolamine, a muscarinic receptor antagonist which induces memory deficits. Utilizing similar methods, the present study employed a two-trial novel object discrimination task to determine the acute effect of a neurotensin peptide analogue with improved metabolic stability, PD149163, on recognition memory in Lister hooded rats. Consistent with previous findings with neurotensin, animals receiving an intracerebroventricular injection of PD149163 (3 microg) significantly discriminated the novel from familiar object during the choice trial. In addition, a similar dose of PD149163 restored the scopolamine-induced deficit in novelty recognition. The restoration effect on scopolamine-induced amnesia produced by PD149163 was blocked by SR142948A, a nonselective neurotensin receptor antagonist, at a dose of 1 mg/kg (intraperitonial) but not at 0.1 mg/kg. In conclusion, the present results confirm a role for neurotensin in mediating memory processes, possibly via central cholinergic mechanisms.
    Matched MeSH terms: Imidazoles/pharmacology
  11. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF
    Biomed Pharmacother, 2008 Jun;62(5):328-32.
    PMID: 17988826
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of cyclic AMP (cAMP) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of adenylyl cyclase inhibitor (SQ22536), NO scavenger (carboxy PTIO) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NIO), was assessed by adding these to the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody prior to culturing on HA surfaces with or without the presence of SNAP. The levels of cAMP and cGMP were determined from the 3-day culture supernatants. The results showed that the production of cAMP but not cGMP by HA-stimulated HOS cells was augmented by SNAP. SQ22536 and carboxy PTIO suppressed but L-NIO only partially inhibited the production of cAMP by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody suppressed the production of cAMP by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of cAMP, perhaps, by augmenting adenylyl cyclase activity initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Imidazoles/pharmacology
  12. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Imidazoles/chemical synthesis; Imidazoles/pharmacology*; Imidazoles/chemistry
  13. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Imidazoles/pharmacology*; Imidazoles/chemistry
  14. Taha M, Imran S, Ismail NH, Selvaraj M, Rahim F, Chigurupati S, et al.
    Bioorg Chem, 2017 10;74:1-9.
    PMID: 28719801 DOI: 10.1016/j.bioorg.2017.07.001
    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.
    Matched MeSH terms: Imidazoles/chemical synthesis; Imidazoles/pharmacology*; Imidazoles/chemistry
  15. Sidik DA, Ngadi N, Amin NA
    Bioresour Technol, 2013 May;135:690-6.
    PMID: 23186683 DOI: 10.1016/j.biortech.2012.09.041
    The production of lignin from empty fruit bunch (EFB) has been carried out using liquefaction method with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid (IL), in presence of sulfuric acid (H2SO4) as a catalyst. Response surface methodology (RSM) based on a factorial Central Composite Design (CCD) was employed to identify the optimum condition for lignin yield. The result indicated that the second order model was adequate for all the independent variables on the response with R(2)=0.8609. The optimum temperature, time, ionic liquid to EFB ratio, and catalyst concentration were 150.5 °C, 151 min, 3:1 wt/wt and 4.73 wt%, respectively for lignin yield=26.6%. The presence of lignin liquefied product was confirmed by UV-Vis and FTIR analysis. It was also demonstrated lignin extraction from lignocellulosic using recycled IL gave sufficient performance.
    Matched MeSH terms: Imidazoles/pharmacology*
  16. Wahidin S, Idris A, Shaleh SR
    Bioresour Technol, 2016 Apr;206:150-4.
    PMID: 26851899 DOI: 10.1016/j.biortech.2016.01.084
    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.
    Matched MeSH terms: Imidazoles/chemistry
  17. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour Technol, 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
    Matched MeSH terms: Imidazoles/chemistry
  18. Chang YK, Show PL, Lan JC, Tsai JC, Huang CR
    Bioresour Technol, 2018 Dec;270:320-327.
    PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138
    An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
    Matched MeSH terms: Imidazoles/chemistry
  19. Bee Keng Law, Euginie Tracy Wong, Qiao Wei Liew, Zhi Sam Heng
    MyJurnal
    Introduction: Hepatitis C virus (HCV) is a worrying public health issue worldwide. The introduction of direct-acting antiviral agents (DAAs) brings revolution to HCV treatment. Pharmacists’ role in Malaysia is significant since the implementation of Medication Therapy Adherence Clinic (MTAC). This study aims to determine the sustained virological response (SVR12) for HCV patients treated with Sofosbuvir and Daclatasvir and/or Ribavirin. Besides, it evaluates adherence rate, types of pharmaceutical intervention and physicians’ acceptance rate.
    Matched MeSH terms: Imidazoles
  20. Yavari S, Sapari NB, Malakahmad A, Razali MAB, Gervais TS, Yavari S
    Bull Environ Contam Toxicol, 2020 Jan;104(1):121-127.
    PMID: 31807794 DOI: 10.1007/s00128-019-02759-y
    Analysis of herbicides sorption behavior in soil is critical in predicting their fate and possible harmful side effects in the environment. Application of polar imidazolinone herbicides is growing in tropical agricultural fields. Imidazolinones have high leaching potential and are persistent. In this study, adsorption-desorption of imazapic and imazapyr herbicides were evaluated in different types of Malaysian agricultural soils. Effects of soil parameters were also investigated on the soils' sorption capacities. The adsorption data fitted best to Freundlich isotherm (R2 > 0.991). The herbicides adsorptions were physical and spontaneous processes as ΔG values were negative and below 40 kJ/mol. The adsorption correlated positively with clay content, total organic carbon (TOC) content, and cation exchange capacity (CEC). There were strong negative correlations between hysteresis index and these factors indicating their importance in imidazolinones immobilization and, thus, their pollution reduction in the environment.
    Matched MeSH terms: Imidazoles/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links