Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Jenol MA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Bioprocess Biosyst Eng, 2020 Nov;43(11):2027-2038.
    PMID: 32572569 DOI: 10.1007/s00449-020-02391-9
    Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.
    Matched MeSH terms: Industrial Microbiology/methods*
  2. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S
    Biomed Res Int, 2013;2013:935852.
    PMID: 23509813 DOI: 10.1155/2013/935852
    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, "sago hampas," through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media.
    Matched MeSH terms: Industrial Microbiology/methods*
  3. Zain MM, Kofli NT, Rozaimah S, Abdullah S
    Pak J Biol Sci, 2011 May 01;14(9):526-32.
    PMID: 22032081
    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.
    Matched MeSH terms: Industrial Microbiology/methods
  4. Norsyahida A, Rahmah N, Ahmad RM
    Lett Appl Microbiol, 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
    Matched MeSH terms: Industrial Microbiology/methods*
  5. Venil CK, Zakaria ZA, Ahmad WA
    Acta Biochim. Pol., 2015;62(2):185-90.
    PMID: 25979288 DOI: 10.18388/abp.2014_870
    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.
    Matched MeSH terms: Industrial Microbiology/methods*
  6. Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, et al.
    BMC Microbiol, 2018 01 04;18(1):3.
    PMID: 29439680 DOI: 10.1186/s12866-017-1145-9
    BACKGROUND: Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared.

    RESULTS: The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation.

    CONCLUSION: Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.

    Matched MeSH terms: Industrial Microbiology/methods
  7. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Apr;190(4):1438-1456.
    PMID: 31782088 DOI: 10.1007/s12010-019-03182-z
    In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67-0.83 g L-1), oil content (30.99-38.08%) and the duration for cells to reach stationary phase (25-27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L-1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.
    Matched MeSH terms: Industrial Microbiology/methods
  8. Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J
    J Biosci Bioeng, 2020 Aug;130(2):195-199.
    PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011
    Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
    Matched MeSH terms: Industrial Microbiology/methods*
  9. Ismail S, Dadrasnia A
    PLoS One, 2015;10(4):e0120931.
    PMID: 25875763 DOI: 10.1371/journal.pone.0120931
    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
    Matched MeSH terms: Industrial Microbiology/methods*
  10. Alsaheb RA, Zjeh KZ, Malek RA, Abdullah JK, El Baz A, El Deeb N, et al.
    Recent Pat Food Nutr Agric, 2020;11(3):211-218.
    PMID: 32178622 DOI: 10.2174/2212798411666200316153148
    BACKGROUND: For many years, Ganoderma was highly considered as biofactory for the production of different types of bioactive metabolites. Of these bioactive compounds, polysaccharides gained much attention based on their high biotherapeutic properties. Therefore, special attention has been paid during the last years for the production of mushrooms bioactive compounds in a closed cultivation system to shorten the cultivation time and increase the product yield.

    OBJECTIVES: This work focuses on the development of a simple cultivation strategy for exopolysaccharides (EPS) production using Ganoderma lucidum and submerged cultivation system.

    METHODS: At first, the best medium supporting EPS production was chosen experimentally from the current published data. Second, like many EPS production processes, carbon and nitrogen concentrations were optimized to support the highest production of polysaccharides in the shake flask level. Furthermore, the process was scaled up in 16-L stirred tank bioreactor.

    RESULTS: The results clearly demonstrated that the best cultivation strategy was cultivation under controlled pH conditions (pH 5.5). Under this condition, the maximal volumetric and specific yield of EPS production were, 5.0 g/L and 0.42 g/g, respectively.

    CONCLUSION: The current results clearly demonstrate the high potential use of submerged cultivation system as an alternative to conventional solid-state fermentation for EPS production by G. lucidum. Furthermore, the optimization of both carbon and nitrogen sources concentration and scaling up of the process showed a significant increase in both volumetric and specific EPS production.

    Matched MeSH terms: Industrial Microbiology/methods*
  11. Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE
    FEMS Microbiol Lett, 2018 10 01;365(20).
    PMID: 30169778 DOI: 10.1093/femsle/fny213
    Lactic acid bacteria constitute a diverse group of industrially significant, safe microorganisms that are primarily used as starter cultures and probiotics, and are also being developed as production systems in industrial biotechnology for biocatalysis and transformation of renewable feedstocks to commodity- and high-value chemicals, and health products. Development of strains, which was initially based mainly on natural approaches, is also achieved by metabolic engineering that has been facilitated by the availability of genome sequences and genetic tools for transformation of some of the bacterial strains. The aim of this paper is to provide a brief overview of the potential of lactic acid bacteria as biological catalysts for production of different organic compounds for food and non-food sectors based on their diversity, metabolic- and stress tolerance features, as well as the use of genetic/metabolic engineering tools for enhancing their capabilities.
    Matched MeSH terms: Industrial Microbiology/methods*
  12. Dinarvand M, Rezaee M, Foroughi M
    Braz J Microbiol, 2017 Jul-Sep;48(3):427-441.
    PMID: 28359854 DOI: 10.1016/j.bjm.2016.10.026
    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.
    Matched MeSH terms: Industrial Microbiology/methods*
  13. Tan IK, Ho CC
    Appl Microbiol Biotechnol, 1991 Nov;36(2):163-6.
    PMID: 1368105
    The utilisation of palm oil and its fractions by Penicillium chrysogenum for growth and penicillin production is strain-dependent. Strain H1107 could utilise crude palm oil, its liquid (palm olein) and solid (palm stearin) fractions and its component fatty acids (oleic, palmitic, stearic and myristic) as the main carbon source; strain M223 could not. Cell-bound lipase activity was higher in H1107 than in M223.
    Matched MeSH terms: Industrial Microbiology/methods*
  14. Chan GF, Rashid NA, Chua LS, Ab llah N, Nasiri R, Ikubar MR
    Bioresour Technol, 2012 Feb;105:48-59.
    PMID: 22182471 DOI: 10.1016/j.biortech.2011.11.094
    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.
    Matched MeSH terms: Industrial Microbiology/methods
  15. Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A
    Biotechnol J, 2014 Dec;9(12):1519-25.
    PMID: 24924214 DOI: 10.1002/biot.201300553
    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.
    Matched MeSH terms: Industrial Microbiology/methods*
  16. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
    Matched MeSH terms: Industrial Microbiology/methods*
  17. Ng HS, Wan PK, Ng TC, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):200-204.
    PMID: 32389469 DOI: 10.1016/j.jbiosc.2020.04.003
    Ectoine is a zwitterionic amino acid derivative that can be naturally sourced from halophilic microorganisms. The increasing demands of ectoine in various industries have urged the researches on the cost-effective approaches on production of ectoine. Ionic liquids-based aqueous biphasic system (ILABS) was applied to recover Halomonas salina ectoine from cells hydrolysate. The 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 was used in the ILABS and the recovery efficiency of ILABS to recover ectoine from H. salina cells lysate was evaluated by determining the effects of phase composition; pHs; crude loading and additional neutral salt (NaCl). The hydrophilic ectoine was targeted to partition to the hydrophilic salt-rich phase. A total yield (YB) of 96.32% ± 1.08 of ectoine was obtained with ILABS of phase composition of 20% (w/w) (Bmim)BF4 and 30% (w/w) sulfate salts; system pH of 5.5 when the 20% (w/w) of crude feedstock was applied to the ILABS. There was no significant enhancement on the ectoine recovery efficiency using the ILABS when NaCl was added, therefore the ILABS composition without the additional neutral salt was recommended for the primary purification of ectoine. Partition coefficient (KE) of 30.80 ± 0.42, purity (PE) of 95.82% and enrichment factor (Ef) of 1.92 were recorded with the optimum (Bmim)BF4/sulfate ILABS. These findings have provided an insight on the feasibility of recovery of intracellular biomolecules using the green solvent-based aqueous system in one single-step operation.
    Matched MeSH terms: Industrial Microbiology/methods*
  18. Maiangwa J, Ali MS, Salleh AB, Rahman RN, Shariff FM, Leow TC
    Extremophiles, 2015 Mar;19(2):235-47.
    PMID: 25472009 DOI: 10.1007/s00792-014-0710-5
    Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
    Matched MeSH terms: Industrial Microbiology/methods
  19. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Industrial Microbiology/methods*
  20. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
    Matched MeSH terms: Industrial Microbiology/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links