A cross between IR64 (high-yielding but drought-susceptible) and Aday Sel (drought-tolerant) rice cultivars yielded a stable line with enhanced grain yield under drought screening field trials at International Rice Research Institute. The major effect qDTY4.1 drought tolerance and yield QTL was detected in the IR77298-14-1-2-10 Backcrossed Inbred Line (BIL) and its IR87705-7-15-B Near Isogenic Line (NIL) with 93.9% genetic similarity to IR64. Although rice yield is extremely susceptible to water stress at reproductive stage, currently, there is only one report on the detection of drought-responsive microRNAs in inflorescence tissue of a Japonica rice line. In this study, more drought-responsive microRNAs were identified in the inflorescence tissues of IR64, IR77298-14-1-2-10 and IR87705-7-15-B via next-generation sequencing. Among the 32 families of inflorescence-specific non-conserved microRNAs that were identified, 22 families were up-regulated in IR87705-7-15-B. Overall 9 conserved and 34 non-conserved microRNA families were found as drought-responsive in rice inflorescence with 5 conserved and 30 non-conserved families induced in the IR87705-7-15-B. The observation of more drought-responsive non-conserved microRNAs may imply their prominence over conserved microRNAs in drought response mechanisms of rice inflorescence. Gene Ontology annotation analysis on the target genes of drought-responsive microRNAs identified in IR87705-7-15-B revealed over-representation of biological processes including development, signalling and response to stimulus. Particularly, four inflorescence-specific microRNAs viz. osa-miR5485, osa-miR5487, osa-miR5492 and osa-miR5517, and two non-inflorescence specific microRNAs viz. osa-miR169d and osa-miR169f.2 target genes that are involved in flower or embryonic development. Among them, osa-miR169d, osa-miR5492 and osa-miR5517 are related to flowering time control. It is also worth mentioning that osa-miR2118 and osa-miR2275, which are implicated in the biosynthesis of rice inflorescence-specific small interfering RNAs, were induced in IR87705-7-15-B but repressed in IR77298-14-1-2-10. Further, gene search within qDTY4.1 QTL region had identified multiple copies of NBS-LRR resistance genes (potential target of osa-miR2118), subtilisins and genes implicated in stomatal movement, ABA metabolism and cuticular wax biosynthesis.
KEY MESSAGE: Transcriptomes generated by laser capture microdissected abnormal staminodes revealed adoption of carpel programming during organ initiation with decreased expression of numerousHSPs,EgDEF1, EgGLO1but increasedLEAFYexpression. The abnormal mantled phenotype in oil palm involves a feminization of the male staminodes into pseudocarpels in pistillate inflorescences. Previous studies on oil palm flowering utilized entire inflorescences or spikelets, which comprised not only the male and female floral organs, but the surrounding tissues as well. Laser capture microdissection coupled with RNA sequencing was conducted to investigate the specific transcriptomes of male and female floral organs from normal and mantled female inflorescences. A higher number of differentially expressed genes (DEGs) were identified in abnormal versus normal male organs compared with abnormal versus normal female organs. In addition, the abnormal male organ transcriptome closely mimics the transcriptome of abnormal female organ. While the transcriptome of abnormal female organ was relatively similar to the normal female organ, a substantial amount of female DEGs encode HEAT SHOCK PROTEIN genes (HSPs). A similar high amount (20%) of male DEGs encode HSPs as well. As these genes exhibited decreased expression in abnormal floral organs, mantled floral organ development may be associated with lower stress indicators. Stamen identity genes EgDEF1 and EgGLO1 were the main floral regulatory genes with decreased expression in abnormal male organs or pseudocarpel initials. Expression of several floral transcription factors was elevated in pseudocarpel initials, notably LEAFY, FIL and DL orthologs, substantiating the carpel specification programming of abnormal staminodes. Specific transcriptomes thus obtained through this approach revealed a host of differentially regulated genes in pseudocarpel initials compared to normal male staminodes.
KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.