Displaying publications 1 - 20 of 206 in total

Abstract:
Sort:
  1. Awang Kalong N, Yusof M
    Int J Health Care Qual Assur, 2017 May 08;30(4):341-357.
    PMID: 28470137 DOI: 10.1108/IJHCQA-06-2016-0082
    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.
    Matched MeSH terms: Health Information Systems/organization & administration*
  2. Ahmed AA, Pradhan B
    Environ Monit Assess, 2019 Feb 26;191(3):190.
    PMID: 30809746 DOI: 10.1007/s10661-019-7333-3
    This study proposes a neural network (NN) model to predict and simulate the propagation of vehicular traffic noise in a dense residential area at the New Klang Valley Expressway (NKVE) in Shah Alam, Malaysia. The proposed model comprises of two main simulation steps: that is, the prediction of vehicular traffic noise using NN and the simulation of the propagation of traffic noise emission using a mathematical model. First, the NN model was developed with the following selected noise predictors: the number of motorbikes, the sum of vehicles, car ratio, heavy vehicle ratio (e.g. truck, lorry and bus), highway density and a light detection and ranging (LiDAR)-derived digital surface model (DSM). Subsequently, NN and its hyperparameters were optimised by a systematic optimisation procedure based on a grid search approach. The noise propagation model was then developed in a geographic information system (GIS) using five variables, namely road geometry, barriers, distance, interaction of air particles and weather parameters. The noise measurement was conducted continuously at 15-min intervals and the data were analysed by taking the minimum, maximum and average values recorded during the day. The measurement was performed four times a day (i.e. morning, afternoon, evening, and midnight) over two days of the week (i.e. Sunday and Monday). An optimal radial basis function NN was used with 17 hidden layers. The learning rate and momentum values were 0.05 and 0.9, respectively. Finally, the accuracy of the proposed method achieved 78.4% with less than 4.02 dB (A) error in noise prediction. Overall, the proposed models were found to be promising tools for traffic noise assessment in dense urban areas.
    Matched MeSH terms: Geographic Information Systems
  3. Arasteh MA, Shamshirband S, Yee PL
    Technol Health Care, 2018;26(2):279-295.
    PMID: 29309042 DOI: 10.3233/THC-170947
    The most appropriate organizational software is always a real challenge for managers, especially, the IT directors. The illustration of the term "enterprise software selection", is to purchase, create, or order a software that; first, is best adapted to require of the organization; and second, has suitable price and technical support. Specifying selection criteria and ranking them, is the primary prerequisite for this action. This article provides a method to evaluate, rank, and compare the available enterprise software for choosing the apt one. The prior mentioned method is constituted of three-stage processes. First, the method identifies the organizational requires and assesses them. Second, it selects the best method throughout three possibilities; indoor-production, buying software, and ordering special software for the native use. Third, the method evaluates, compares and ranks the alternative software. The third process uses different methods of multi attribute decision making (MADM), and compares the consequent results. Based on different characteristics of the problem; several methods had been tested, namely, Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Elimination and Choice Expressing Reality (ELECTURE), and easy weight method. After all, we propose the most practical method for same problems.
    Matched MeSH terms: Hospital Information Systems/organization & administration*
  4. Verutes GM, Johnson AF, Caillat M, Ponnampalam LS, Peter C, Vu L, et al.
    PLoS One, 2020;15(8):e0237835.
    PMID: 32817725 DOI: 10.1371/journal.pone.0237835
    Fisheries bycatch has been identified as the greatest threat to marine mammals worldwide. Characterizing the impacts of bycatch on marine mammals is challenging because it is difficult to both observe and quantify, particularly in small-scale fisheries where data on fishing effort and marine mammal abundance and distribution are often limited. The lack of risk frameworks that can integrate and visualize existing data have hindered the ability to describe and quantify bycatch risk. Here, we describe the design of a new geographic information systems tool built specifically for the analysis of bycatch in small-scale fisheries, called Bycatch Risk Assessment (ByRA). Using marine mammals in Malaysia and Vietnam as a test case, we applied ByRA to assess the risks posed to Irrawaddy dolphins (Orcaella brevirostris) and dugongs (Dugong dugon) by five small-scale fishing gear types (hook and line, nets, longlines, pots and traps, and trawls). ByRA leverages existing data on animal distributions, fisheries effort, and estimates of interaction rates by combining expert knowledge and spatial analyses of existing data to visualize and characterize bycatch risk. By identifying areas of bycatch concern while accounting for uncertainty using graphics, maps and summary tables, we demonstrate the importance of integrating available geospatial data in an accessible format that taps into local knowledge and can be corroborated by and communicated to stakeholders of data-limited fisheries. Our methodological approach aims to meet a critical need of fisheries managers: to identify emergent interaction patterns between fishing gears and marine mammals and support the development of management actions that can lead to sustainable fisheries and mitigate bycatch risk for species of conservation concern.
    Matched MeSH terms: Geographic Information Systems
  5. Rohani N, Yusof MM
    Int J Med Inform, 2023 Feb;170:104958.
    PMID: 36608630 DOI: 10.1016/j.ijmedinf.2022.104958
    BACKGROUND: Pharmacy information systems (PhIS) can cause medication errors that pharmacists may overlook due to their increased workload and lack of understanding of maintaining information quality. This study seeks to identify factors influencing unintended consequences of PhIS and how they affect the information quality, which can pose a risk to patient safety.

    MATERIALS AND METHODS: This qualitative, explanatory case study evaluated PhIS in ambulatory pharmacies in a hospital and a clinic. Data were collected through observations, interviews, and document analysis. We applied the socio-technical interactive analysis (ISTA) framework to investigate the socio-technical interactions of pharmacy information systems that lead to unintended consequences. We then adopted the human-organization-process-technology-fit (HOPT-fit) framework to identify their contributing and dominant factors, misfits, and mitigation measures.

    RESULTS: We identified 28 unintended consequences of PhIS, their key contributing factors, and their interrelations with the systems. The primary causes of unintended consequences include system rigidity and complexity, unclear knowledge, understanding, skills, and purpose of using the system, use of hybrid paper and electronic documentation, unclear and confusing transitions, additions and duplication of tasks and roles in the workflow, and time pressure, causing cognitive overload and workarounds. Recommended mitigating mechanisms include human factor principles in system design, data quality improvement for PhIS in terms of effective use of workspace, training, PhIS master data management, and communication by standardizing workarounds.

    CONCLUSION: Threats to information quality emerge in PhIS because of its poor design, a failure to coordinate its functions and clinical tasks, and pharmacists' lack of understanding of the system use. Therefore, safe system design, fostering awareness in maintaining the information quality of PhIS and cultivating its safe use in organizations is essential to ensure patient safety. The proposed evaluation approach facilitates the evaluator to identify complex socio-technical interactions and unintended consequences factors, impact, and mitigation mechanisms.

    Matched MeSH terms: Information Systems
  6. Kalong NA, Yusof MM
    Stud Health Technol Inform, 2013;192:749-53.
    PMID: 23920657
    Despite the rapid application of the Lean method in healthcare, its study in IT environments, particularly in Health Information Systems (HIS), is still limited primarily by a lack of waste identification. This paper aims to review the literature to provide an insight into the nature of waste in HIS from the perspective of Lean management. Eight waste frameworks within the context of healthcare and information technology were reviewed. Based on the review, it was found that all the seven waste categories from the manufacturing sector also exist in both the healthcare and IT domains. However, the nature of the waste varied depending on the processes of the domains. A number of additional waste categories were also identified. The findings reveal that the traditional waste model can be adapted to identify waste in both the healthcare and IT sectors.
    Matched MeSH terms: Health Information Systems/economics*
  7. Zakaria N, Mohd Yusof SA
    J Infect Public Health, 2016 Nov-Dec;9(6):774-780.
    PMID: 27686258 DOI: 10.1016/j.jiph.2016.08.017
    BACKGROUND: Hospital Information Systems (HIS) can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems.

    METHODS: The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. .

    RESULTS: Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process.

    CONCLUSIONS: From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians' side.
    Matched MeSH terms: Hospital Information Systems*
  8. Yusof MM, Arifin A
    J Infect Public Health, 2016 Nov-Dec;9(6):766-773.
    PMID: 27665060 DOI: 10.1016/j.jiph.2016.08.014
    INTRODUCTION: Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS.

    METHODOLOGY: Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS.

    RESULT: A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes.

    CONCLUSION: The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system.
    Matched MeSH terms: Clinical Laboratory Information Systems*
  9. Ditzer T, Glauner R, Förster M, Köhler P, Huth A
    Tree Physiol, 2000 Mar;20(5_6):367-381.
    PMID: 12651452
    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at the FMU level. The simulations predict slow recovery rates, and regeneration times far exceeding 100 years.
    Matched MeSH terms: Geographic Information Systems
  10. Mohd Salleh MI, Zakaria N, Abdullah R
    J Infect Public Health, 2016 Nov-Dec;9(6):698-707.
    PMID: 27659115 DOI: 10.1016/j.jiph.2016.09.002
    BACKGROUND: The Ministry of Health Malaysia initiated the total hospital information system (THIS) as the first national electronic health record system for use in selected public hospitals across the country. Since its implementation 15 years ago, there has been the critical requirement for a systematic evaluation to assess its effectiveness in coping with the current system, task complexity, and rapid technological changes. The study aims to assess system quality factors to predict the performance of electronic health in a single public hospital in Malaysia.

    METHODS: Non-probability sampling was employed for data collection among selected providers in a single hospital for two months. Data cleaning and bias checking were performed before final analysis in partial least squares-structural equation modeling.

    RESULTS AND CONCLUSIONS: Convergent and discriminant validity assessments were satisfied the required criterions in the reflective measurement model. The structural model output revealed that the proposed adequate infrastructure, system interoperability, security control, and system compatibility were the significant predictors, where system compatibility became the most critical characteristic to influence an individual health care provider's performance. The previous DeLone and McLean information system success models should be extended to incorporate these technological factors in the medical system research domain to examine the effectiveness of modern electronic health record systems. In this study, care providers' performance was expected when the system usage fits with patients' needs that eventually increased their productivity.
    Matched MeSH terms: Hospital Information Systems*
  11. Aniza Ismail, Ahmad Taufik Jamil, Ahmad Fareed A Rahman, Jannatul Madihah Abu Bakar, Natrah Mohd Saad, Hussain Saadi
    MyJurnal
    Hospital Information System (HIS) is a comprehensive, integrated information system designed to manage the administrative, financial and clinical aspects of a hospital. This study is to describe those aspects of the implementation of hospital information system in three tertiary hospitals in Klang Valley; Serdang Hospital, Selayang Hospital and University Kebangsaan Malaysia Medical Centre (UKMMC). A qualitative study was conducted to obtain views on information system development and implementation in the hospitals mentioned above. In-depth interviews with personnel representing both the system providers and the end-users were done guided by a questionnaire. The results of the interviews were categorized into few themes namely the system development, human resource, scope of implementation, support system, user-friendly, training, hardware and security. There were differences in hospital information system development and implementation in the three hospitals. Each system has its own strengths and weaknesses that make it unique. In developing HIS, its important to ensure the system can work effectively and efficiently. Quality human resource, good support system, user-friendly and adequate training of the end-user will determine the success of implementation of HIS. Upgrading of hardware and software as needed is the basis to keep up with the pace of technology advancement and increasing number of patients. It is hoped that HIS will be implemented in all other hospitals with effective integration and networking.
    Matched MeSH terms: Hospital Information Systems; Information Systems
  12. Rahim MH, Dom NC, Ismail SNS, Mulud ZA, Abdullah S, Pradhan B
    One Health, 2021 Jun;12:100222.
    PMID: 33553566 DOI: 10.1016/j.onehlt.2021.100222
    This study has highlighted the trend of recently-reported dengue cases after the implementation of the Movement Control Orders (MCOs) caused due to COVID-19 pandemic in Malaysia. The researchers used the dengue surveillance data published by the Malaysian Ministry of Health during the 3 phases of MCO (which ranged between 17th March 2020 and 28th April 2020) was used for determining the cumulative number of dengue patients. Thereafter, the dengue cases were mapped using the Geographical Information System (GIS). The results indicated that during the 42 days of MCO in Peninsular Malaysia, 11,242 total cases of dengue were reported. The daily trend of the dengue cases showed a decrease from 7268 cases that occurred before the MCOs to 4662 dengue cases that occurred during the initial 14 days of the COVID-19 pandemic (i.e., MCO I), to 3075 cases occurring during the MCO II and 3505 dengue cases noted during MCO III. The central peninsular region showed a maximal decrease in new dengue cases (52.62%), followed by the northern peninsular region (1.89%); eastern coastal region (1.25%) and the southern peninsular region (1.14%) during the initial MCO implementation. However, an increase in the new dengue cases was noted during the MCO III period, wherein all states showed an increase in the new dengue cases as compared during MCO II. The decrease in the pattern was not solely based on the MCO, hence, further investigation is necessary after considering different influencing factors. These results have important implication for future large-scale risk assessment, planning and hazard mitigation on dengue management.
    Matched MeSH terms: Geographic Information Systems
  13. Pharo HJ, Sopian MJ
    Acta Vet Scand Suppl, 1988;84:197-9.
    PMID: 3232607
    Matched MeSH terms: Information Systems*
  14. Syed-Mohamad SM, Ali SH, Mat-Husin MN
    Health Inf Manag, 2010;39(1):30-5.
    PMID: 20335647
    This paper describes the method used to develop the One Stop Crisis Centre (OSCC) Portal, an open source web-based electronic patient record system (EPR) for the One Stop Crisis Center, Hospital Universiti Sains Malaysia (HUSM) in Kelantan, Malaysia. Features and functionalities of the system are presented to demonstrate the workflow. Use of the OSCC Portal improved data integration and data communication and contributed to improvements in care management. With implementation of the OSCC portal, improved coordination between disciplines and standardisation of data in HUSM were noticed. It is expected that this will in turn result in improved data confidentiality and data integrity. The collected data will also be useful for quality assessment and research. Other low-resource centers with limited computer hardware and access to open-source software could benefit from this endeavour.
    Matched MeSH terms: Hospital Information Systems
  15. Tan KP, Mohamad Azlan Z, Rumaisa MP, Siti Aisyah Murni MR, Radhika S, Nurismah MI, et al.
    Med J Malaysia, 2014 Apr;69(2):79-85.
    PMID: 25241817 MyJurnal
    AIM: This study was performed to determine the accuracy of ultrasound (USG) as compared to mammography (MMG) in detecting breast cancer.

    METHODS: This was a review of patients who had breast imaging and biopsy during an 18-month period. Details of patients who underwent breast biopsy were obtained from the department biopsy record books and imaging request forms. Details of breast imaging findings and histology of lesions biopsied were obtained from the hospital Integrated Radiology Information System (IRIS). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of USG and MMG were calculated with histology as the gold standard.

    RESULTS: A total of 326 breast lesions were biopsied. Histology results revealed the presence of 74 breast cancers and 252 benign lesions. USG had a sensitivity of 82%, specificity of 84%, PPV = 60%, NPV = 94% and an accuracy of 84%. MMG had a sensitivity of 49%, specificity of 89%, PPV = 53%, NPV = 88% and an accuracy of 81%. A total of 161 lesions which were imaged with both modalities were analyzed to determine the significance in the differences in sensitivity and specificity between USG and MMG. Sensitivity of USG (75%) was significantly higher than sensitivity of MMG (44%) (X(2)1=6.905, p=0.014). Specificity of MMG (91%) was significantly higher than specificity of USG (79%) (X(2)1=27.114, p<0.001). Compared with MMG, the sensitivity of USG was 50% (95% CI 10%-90%) higher in women aged less than 50 years (X(2)1=0.000, p=1.000) and 27% (95% CI 19%-36%) higher in women aged 50 years and above (X(2)1=5.866, p=0.015). Compared with MMG, the sensitivity of USG was 40% (95% CI 10%-70%) higher in women with dense breasts (X(2)1=0.234, p=0.628) and 27% (95% CI 9%-46%) higher in women with non-dense breasts (X(2)1=4.585, p=0.032).

    CONCLUSION: Accuracy of USG was higher compared with MMG. USG was more sensitive than MMG regardless of age group. However, MMG was more specific in those aged 50 years and older. USG was more sensitive and MMG was more specific regardless of breast density. In this study, 20% of breast cancers detected were occult on MMG and seen only on USG.
    Matched MeSH terms: Radiology Information Systems
  16. Shahri AB, Ismail Z, Mohanna S
    J Med Syst, 2016 Nov;40(11):241.
    PMID: 27681101
    The security effectiveness based on users' behaviors is becoming a top priority of Health Information System (HIS). In the first step of this study, through the review of previous studies 'Self-efficacy in Information Security' (SEIS) and 'Security Competency' (SCMP) were identified as the important factors to transforming HIS users to the first line of defense in the security. Subsequently, a conceptual model was proposed taking into mentioned factors for HIS security effectiveness. Then, this quantitative study used the structural equation modeling to examine the proposed model based on survey data collected from a sample of 263 HIS users from eight hospitals in Iran. The result shows that SEIS is one of the important factors to cultivate of good end users' behaviors toward HIS security effectiveness. However SCMP appears a feasible alternative to providing SEIS. This study also confirms the mediation effects of SEIS on the relationship between SCMP and HIS security effectiveness. The results of this research paper can be used by HIS and IT managers to implement their information security process more effectively.
    Matched MeSH terms: Health Information Systems/organization & administration*
  17. Cros A, Ahamad Fatan N, White A, Teoh SJ, Tan S, Handayani C, et al.
    PLoS One, 2014;9(6):e96332.
    PMID: 24941442 DOI: 10.1371/journal.pone.0096332
    In this paper we describe the construction of an online GIS database system, hosted by WorldFish, which stores bio-physical, ecological and socio-economic data for the 'Coral Triangle Area' in South-east Asia and the Pacific. The database has been built in partnership with all six (Timor-Leste, Malaysia, Indonesia, The Philippines, Solomon Islands and Papua New Guinea) of the Coral Triangle countries, and represents a valuable source of information for natural resource managers at the regional scale. Its utility is demonstrated using biophysical data, data summarising marine habitats, and data describing the extent of marine protected areas in the region.
    Matched MeSH terms: Geographic Information Systems
  18. Sham NM, Krishnarajah I, Ibrahim NA, Lye MS
    Geospat Health, 2014 May;8(2):503-7.
    PMID: 24893027
    Hand, foot and mouth disease (HFMD) is endemic in Sarawak, Malaysia. In this study, a geographical information system (GIS) was used to investigate the relationship between the reported HFMD cases and the spatial patterns in 11 districts of Sarawak from 2006 to 2012. Within this 7-years period, the highest number of reported HFMD cases occurred in 2006, followed by 2012, 2008, 2009, 2007, 2010 and 2011, in descending order. However, while there was no significant distribution pattern or clustering in the first part of the study period (2006 to 2011) based on Moran's I statistic, spatial autocorrelation (P = 0.068) was observed in 2012.
    Matched MeSH terms: Geographic Information Systems
  19. Abidi SS, Goh A, Yusoff Z
    Stud Health Technol Inform, 1998;52 Pt 2:1282-6.
    PMID: 10384666
    The practice of medicine, with its wide range of environmental conditions and complex dependencies, has long been used as a test bed for various advanced technologies. Telemedicine, as conceptualised within the Multimedia Super Corridor (MSC) context, is seen as the application of several relatively mature technologiesartificial intelligence (AI), multimedia communication and information systems (IS) amongst othersso as to benefit a large cross-section of the Malaysian population. We will discuss in general terms the Malaysian vision on the comprehensive MSC telemedicine solution, its functionality and associated operational conditions. In particular, this paper focuses on the conceptualisation of one key telemedical component i.e. the Lifetime Health Plan (LHP) system, which is eventually intended to be a distributed multi-module application for the periodic monitoring and generation of health-care advisories for upwards of 20 million Malaysians.
    Matched MeSH terms: Management Information Systems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links