Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Ee GC, Wen YP, Sukari MA, Go R, Lee HL
    Nat Prod Res, 2009;23(14):1322-9.
    PMID: 19735047 DOI: 10.1080/14786410902753138
    An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
    Matched MeSH terms: Insecticides/pharmacology
  2. Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2005 Jun;22(1):63-8.
    PMID: 16880755 MyJurnal
    The susceptibility of Culex quinquefasciatus to chemical insecticides in two field sites in Kuala Lumpur was evaluated using the WHO standard susceptibility test. Less then 7 days old female mosquitos, reared from wild caught females were exposed to discriminating dosages of insecticides at recommended exposure periods. The larval bioassay were conducted using the multiple concentrations and the LC50 value was determined. The results indicated that cyfluthrin is the most effective among all the insecticides tested with LT50 value of 29.95 min and 28.59 min, for the strain from Ampang Hill and Pantai Dalam, respectively. It was surprisingly to note that both these field strains showed 0% mortality when tested against malathion and DDT. The LC50 value indicated that both strains were highly resistant to malathion with resistance ratio of 17,988 folds and 14,053 folds, respectively. This concludes that resistance at larval stages is extremely high compared to adult stages.
    Matched MeSH terms: Insecticides/pharmacology*
  3. Rahim J, Ahmad AH, Ahmad H, Ishak IH, Rus AC, Maimusa HA
    J Am Mosq Control Assoc, 2017 Sep;33(3):200-208.
    PMID: 28854111 DOI: 10.2987/16-6607R.1
    Insecticide-based vector control approaches are facing challenges due to the development of resistance in vector mosquitoes. Therefore, a proper resistance surveillance program using baseline lethal concentrations is crucial for resistance management strategies. Currently, the World Health Organization's (WHO) diagnostic doses established for Aedes aegypti and Anopheles species are being used to study the resistance status of Aedes albopictus. In this study, we established the diagnostic doses for permethrin, deltamethrin, and malathion using a known susceptible reference strain. Five field-collected populations were screened against these doses, following the WHO protocol. This study established the diagnostic dose of malathion at 2.4%, permethrin at 0.95%, and deltamethrin at 0.28%, which differ from the WHO doses for Aedes aegypti and Anopheles spp. Among the insecticides tested on the 5 wild populations, only deltamethrin showed high effectiveness. Different susceptibility and resistance patterns were observed with permethrin, malathion, and dichloro-diphenyl-trichloroethane (DDT) at 4%. This study may assist the health authorities to improve future chemical-based vector control operations in dengue-endemic areas.
    Matched MeSH terms: Insecticides/pharmacology*
  4. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    J Med Entomol, 2019 10 28;56(6):1715-1725.
    PMID: 31290534 DOI: 10.1093/jme/tjz117
    Resistance status of Aedes albopictus (Diptera: Culicidae) collected from Sabah, East Malaysia, was evaluated against four major classes of adulticides, namely pyrethroid, carbamate, organochlorine, and organophosphate. Adult bioassays conforming to WHO standard protocols were conducted to assess knockdown and mortality rates of Ae. albopictus. Among tested pyrethroid adulticides, only cyfluthrin, lambda-cyaholthrin, and deltamethrin were able to inflict total knockdown. The other adulticide classes mostly failed to cause any knockdown; the highest knockdown rate was only 18.33% for propoxur. With regards to mortality rate, Ae. albopictus was unanimously susceptible toward all pyrethroids, dieldrin, and malathion, but exhibited resistance toward bendiocarb, propoxur, dichlorodiphenyltrichloroethane, and fenitrothion. Additionally, correlation analysis demonstrated cross-resistance between bendiocarb and propoxur, and malathion and propoxur. In conclusion, this study has disclosed that pyrethroids are still generally effective for Aedes control in Sabah, Malaysia. The susceptibility status of Ae. albopictus against pyrethroids in descending order was cyfluthrin > lambda-cyhalothrin > deltamethrin > etofenprox > permethrin.
    Matched MeSH terms: Insecticides/pharmacology*
  5. Lau KW, Chen CD, Low VL, Lee HL, Azidah AA, Sofian-Azirun M
    J Med Entomol, 2021 11 09;58(6):2292-2298.
    PMID: 33999147 DOI: 10.1093/jme/tjab093
    Resistance status of Aedes albopictus (Skuse) from 13 districts in Sarawak State, Malaysia, was evaluated against four major classes of adulticides, namely organochlorine, organophosphate, carbamate, and pyrethroid. Adult bioassays were performed according to the World Health Organization (WHO) standard protocols to assess knockdown and mortality rates of Ae. albopictus. Among the tested pyrethroids, only cyfluthrin was able to exhibit complete knockdown. On the other hand, different susceptibility and resistance patterns were observed in other adulticides. As for mortality rates, the mosquitoes were susceptible to cyfluthrin and dieldrin but exhibited various susceptibilities to other tested adulticides. Cross-resistance was discovered within and between tested insecticide classes. Significant correlations were found within pyrethroid and carbamate classes (i.e., bendiocab and propoxur, P = 0.036; etofenprox and permethrin, P = 0.000; deltamethrin and lambda-cyhalothrin, P = 0.822; deltamethrin and permethrin, P = 0.042). Additionally, insecticides belonging to different groups were also found significantly correlated (i.e., malathion and deltamethin, P = 0.019; malathion and bendiocarb, P = 0.008; malathion and propoxur, P = 0.007; and bendiocarb and deltamethrin, P = 0.031). In conclusion, cyfluthrin was effective for Aedes albopictus control in Sarawak State and these data may assist local authorities to improve future vector control operations.
    Matched MeSH terms: Insecticides/pharmacology*
  6. Chan HH, Mustafa FF, Zairi J
    Trop Biomed, 2011 Aug;28(2):464-70.
    PMID: 22041770
    Routine surveillance on resistant status of field mosquito populations is important to implement suitable strategies in order to prevent pest outbreaks. WHO test kit bioassay is the most frequent bioassay used to investigate the susceptibility status of field-collected mosquitoes, as it is relatively convenient to be carried out in the field. In contrast, the topical application of active ingredient is less popular in investigating the susceptibility status of mosquitoes. In this study, we accessed the susceptibility status of Aedes albopictus Skuse collected from two dengue hotspots on Penang Island: Sungai Dua and Persiaran Mayang Pasir. Two active ingredients: permethrin and deltamethrin, were used. WHO test kit bioassay showed that both wild strains collected were susceptible to the two active ingredients; while topical application assay showed that they were resistant. This indicated that WHO test kit bioassay less sensitive to low level of resistance compared to topical application assay. Hence, topical application is expected to be more indicative when used in a resistance surveillance programme.
    Matched MeSH terms: Insecticides/pharmacology*
  7. Thiagaletchumi M, Zuharah WF, Ahbi Rami R, Fadzly N, Dieng H, Ahmad AH, et al.
    Trop Biomed, 2014 Sep;31(3):466-76.
    PMID: 25382473 MyJurnal
    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P < 0.05). There was no adult emergence observed up to seven days for non-replenishment and first two days for replenishment of water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.
    Matched MeSH terms: Insecticides/pharmacology*
  8. Bujang NS, Lee CY
    J Econ Entomol, 2010 Apr;103(2):443-7.
    PMID: 20429461
    Here, we describe the biology of a relatively new pest cockroach species in Southeast Asia, Symploce pallens (Stephens) (Dictyoptera: Blattellidae). S. pallens collected from Penang Island, Malaysia, were used for the biological parameter studies and were observed for molting and reproduction events. Nymphal development took 118.2 +/- 1.7 d, with a mean of 9.5 +/- 0.1 molts. The oothecal incubation period was 36.1 +/- 0.2 d. Females produced a mean of 16.0 +/- 10.2 oothecae, with mean 17.6 +/- 0.1 nymphs per ootheca. Nymphal survivorship per ootheca was 90.4%, and 90.7% of nymphs achieved adulthood. The sex ratio did not deviate from 1:1. The mean longevity of adult males and females was 309.3 +/- 7.6 and 322.6 +/- 14.8 d, respectively. In general, S. pallens exhibited higher oothecal production and longer nymphal development and longevity compared with the German cockroach, Blattella germanica (L.).
    Matched MeSH terms: Insecticides/pharmacology
  9. Singh RK, Haq S, Kumar G, Dhiman RC
    J Commun Dis, 2013 Mar-Jun;45(1-2):1-16.
    PMID: 25141549
    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
    Matched MeSH terms: Insecticides/pharmacology
  10. Shahraki G, Bin Ibrahim Y, Noor HM, Rafinejad J, Shahar MK
    Trop Biomed, 2010 Aug;27(2):226-35.
    PMID: 20962720 MyJurnal
    This study assessed the effectiveness of a biorational control approach using 2% hydramethylnon gel bait on German cockroaches, Blattella germanica (L.) in some residential and hospital buildings in South Western Iran. In total, three buildings consisting of 150 apartment units and 101 hospital units were monitored weekly via sticky trap for German cockroach infestations over a period of eight months. These infested units were randomly subjected to intervention and control treatments. Pamphlets and posters were provided and lectures were given to support the educational programmes as a tactic of the biorational system. Survey on cockroach index for intervention units showed 67-94% recovery to achieve clean level of infestation for intervention units of the residential buildings and 83% for the hospital. Mean percentage reductions for treatment groups throughout the 15-week treatment period were 76.8% for the residential buildings and 88.1% for the hospital, showing significant differences compared to the control groups. Linear regression of infestation rates were recorded weekly after treatment and their negative slope for treatment groups substantiated significant reductions for interventions. The results of this study showed that biorational control method, using gel bait, educational programmes and sanitation, is an effective way to manage German cockroach infestation.
    Matched MeSH terms: Insecticides/pharmacology*
  11. Selvi S, Edah MA, Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2007 Jun;24(1):63-75.
    PMID: 17568379 MyJurnal
    Larvae and adults of Culex quinquefasciatus were used for the test undertaken for malathion resistant strain (F61 - F65) and permethrin resistant strain (F54 - F58). The results showed that the LC50 for both malathion (F61 - F65) and permethrin (F54 - F58) resistant Cx. quinquefasciatus increased steadily throughout the subsequent five generations, indicating a marked development of resistance. The adult female malathion resistant strain have developed a high resistance level to malathion diagnostic dosage with a resistance ratio of 9.3 to 17.9 folds of resistance compared with the susceptible Cx. quinquefasciatus. Permethrin resistance ratio remained as 1.0 folds of resistance at every generation. It was obvious that malathion resistance developed at a higher rate in adult females compared to permethrin. Enzyme-based metabolic mechanisms of insecticide resistance were investigated based on the biochemical assay principle. From the results obtained obviously shows that there is a significant difference (p < 0.05) in esterase level in both malathion and permethrin selected strains. Female malathion selected strain has the higher level of esterase activity compared to the female permethrin selected strain at (0.8 to 1.04) alpha-Na micromol/min/mg protein versus (0.15 to 0.24) alpha-Na micromol/min/mg protein respectively. This indicated increased level of non-specific esterase is playing an important role in resistance mechanism in female malathion selected strain. Permethrin selected strain exhibited non-specific esterase activity at a very low level throughout the different life stages compared to malathion selected strain. This study suggests that life stages play a predominant role in conferring malathion and permethrin resistance in Cx. quinquefasciatus.
    Matched MeSH terms: Insecticides/pharmacology*
  12. Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, et al.
    PLoS One, 2018;13(11):e0206982.
    PMID: 30399167 DOI: 10.1371/journal.pone.0206982
    BACKGROUND: The resistance problem of dengue vectors to different classes of insecticides that are used for public health has raised concerns about vector control programmes. Hence, the discovery of alternative compounds that would enhance existing tools is important for overcoming the resistance problem of using insecticides in vectors and ensuring a chemical-free environment. The larvicidal effects of Azolla pinnata extracts by using two different extraction methods with methanol solvent against Aedes in early 4th instar larvae was conducted.

    METHODS: The fresh Azolla pinnata plant from Kuala Krai, Kelantan, Malaysia was used for crude extraction using Soxhlet and maceration methods. Then, the chemical composition of extracts and its structure were identified using GCMS-QP2010 Ultra (Shimadzu). Next, following the WHO procedures for larval bioassays, the extracts were used to evaluate the early 4th instar larvae of Aedes mosquito vectors.

    RESULTS: The larvicidal activity of Azolla pinnata plant extracts evidently affected the early 4th instar larvae of Aedes aegypti mosquito vectors. The Soxhlet extraction method had the highest larvicidal effect against Ae. aegypti early 4th instar larvae, with LC50 and LC95 values of 1093 and 1343 mg/L, respectively. Meanwhile, the maceration extraction compounds were recorded with the LC50 and LC95 values of 1280 and 1520 mg/L, respectively. The larvae bioassay test for Ae. albopictus showed closely similar values in its Soxhlet extraction, with LC50 and LC95 values of 1035 and 1524 mg/L, compared with the maceration extraction LC50 and LC95 values of 1037 and 1579 mg/L, respectively. The non-target organism test on guppy fish, Poecilia reticulata, showed no mortalities and posed no toxic effects. The chemical composition of the Azolla pinnata plant extract has been found and characterized as having 18 active compounds for the Soxhlet method and 15 active compounds for the maceration method.

    CONCLUSIONS: Our findings showed that the crude extract of A. pinnata bioactive molecules are effective and have the potential to be developed as biolarvicides for Aedes mosquito vector control. This study recommends future research on the use of active ingredients isolated from A. pinnata extracts and their evaluation against larvicidal activity of Aedes in small-scale field trials for environmentally safe botanical insecticide invention.

    Matched MeSH terms: Insecticides/pharmacology*
  13. Abdullah F, Subramanian P, Ibrahim H, Abdul Malek SN, Lee GS, Hong SL
    J Insect Sci, 2015;15(1):175.
    PMID: 25688085 DOI: 10.1093/jisesa/ieu175
    Dual choice bioassays were used to evaluate the antifeedant property of essential oil and methanolic extract of Alpinia galanga (L.) (locally known as lengkuas) against two species of termites, Coptotermes gestroi (Wasmann) and Coptotermes curvignathus (Holmgren) (Isoptera: Rhinotermitidae). A 4-cm-diameter paper disc treated with A. galanga essential oil and another treated with either methanol or hexane as control were placed in a petri dish with 10 termites. Mean consumption of paper discs (miligram) treated with 2,000 ppm of essential oil by C. gestroi was 3.30 ± 0.24 mg and by C. curvignathus was 3.32 ± 0.24 mg. A. galanga essential oil showed significant difference in antifeedant effect, 2,000 ppm of A. galanga essential oil was considered to be the optimum concentration that gave maximum antifeedant effect. The essential oil composition was determined using gas chromatography-mass spectrometry. The major component of the essential oil was 1,8-cineol (61.9%). Antifeedant bioassay using 500 ppm of 1,8-cineol showed significant reduction in paper consumption by both termite species. Thus, the bioactive agent in A. galangal essential oil causing antifeeding activity was identified as 1,8-cineol. Repellent activity shows that 250 ppm of 1,8-cineol caused 50.00 ± 4.47% repellency for C. gestroi, whereas for C. curvignathus 750 ppm of 1,8-cineol was needed to cause similar repellent activity (56.67 ± 3.33%). C. curvignathus is more susceptible compare to C. gestroi in Contact Toxicity study, the lethal dose (LD50) of C. curvignathus was 945 mg/kg, whereas LD50 value for C. gestroi was 1,102 mg/kg. Hence 1,8-cineol may be developed as an alternative control against termite in sustainable agriculture practices.
    Matched MeSH terms: Insecticides/pharmacology*
  14. Khalid MF, Lee CY, Doggett SL, Veera Singham G
    PLoS One, 2019;14(6):e0218343.
    PMID: 31206537 DOI: 10.1371/journal.pone.0218343
    Many insect species display daily variation of sensitivity to insecticides when they are exposed to the same concentration at different times during the day. To date, this has not been investigated in bed bugs. To address this, we explored circadian rhythms in insecticide susceptibility, xenobiotic metabolizing (XM) gene expressions, and metabolic detoxification in the common bed bug, Cimex lectularius. An insecticide susceptible Monheim strain of C. lectularius was most tolerant of deltamethrin during the late photophase at ZT9 (i.e. nine hours after light is present in the light-dark cycle (LD) cycle) and similarly repeated at CT9 (i.e. nine hours into the subjective day in constant darkness (DD)) suggesting endogenous circadian involvement in susceptibility to deltamethrin. No diel rhythm was observed against imidacloprid insecticide despite significant daily susceptibility in both LD and DD conditions. Rhythmic expressions of metabolic detoxification genes, GSTs1 and CYP397A1 displayed similar expression patterns with total GST and P450 enzyme activities in LD and DD conditions, respectively. The oscillation of mRNA levels of GSTs1 and CYP397A1 was found consistent with peak phases of deltamethrin susceptibility in C. lectularius. This study demonstrates that circadian patterns of metabolic detoxification gene expression occur within C. lectularius. As a consequence, insecticide efficacy can vary dramatically throughout a 24 hour period.
    Matched MeSH terms: Insecticides/pharmacology*
  15. Nurita AT, Abu Hassan A
    Trop Biomed, 2010 Dec;27(3):559-65.
    PMID: 21399598 MyJurnal
    Two performance (efficacy and attractiveness) comparisons of neonicotinoid baits QuickBayt® (imidacloprid) and Agita® (thiamethoxam) against filth flies were conducted under field conditions to determine suitability for use outdoors. The first experiment compared bait performance and the second compared effects of different applications on QuickBayt® performance. Applications compared were: (i) scattered in petri dish (SPD); (ii) wet-down in petri dish (WPD); (iii) scattered on cardboard (SCB) and (iv) painted on cardboards (PCB). Efficacy and attractiveness were assessed based on knockdown percentage (KD%) and number of flies feeding on baits, respectively. The KD% of QuickBayt® (34% ± 3.0%) was not significantly higher than Agita® (29% ± 1.3%) (t-test, P>0.05). Agita® (101 ± 5.7 flies) was significantly more attractive to flies than QuickBayt® (76 ± 4.8 flies) and the sugar solution (49 ± 7.2) (one-way ANOVA, P<0.05). The PCB and SCB applications were significantly more attractive to filth flies than WPD and SPD (One-way ANOVA, P<0.05), however differences in KD% were not significantly different (One-way ANOVA, P>0.05). The two baits provided the same level of efficacy in a wide-open area against filth flies of various species. QuickBayt® was more versatile; efficacy was not significantly affected by different applications. Surface area and moisture affects attractiveness of the bait.
    Matched MeSH terms: Insecticides/pharmacology*
  16. Ishak IH, Jaal Z, Ranson H, Wondji CS
    Parasit Vectors, 2015;8:181.
    PMID: 25888775 DOI: 10.1186/s13071-015-0797-2
    Knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Here, we report an extensive resistance profiling of the dengue vectors Aedes aegypti and Aedes albopictus across Malaysia and establish the contribution of knockdown resistance mechanism revealing significant contrast between both species.
    Matched MeSH terms: Insecticides/pharmacology
  17. Dieng H, Satho T, Abang F, Miake F, Azman FAB, Latip NA, et al.
    Indian J Med Res, 2018 Sep;148(3):334-340.
    PMID: 30425225 DOI: 10.4103/ijmr.IJMR_1604_16
    Background & objectives: In sterile insect technology (SIT), mating competitiveness is a pre-condition for the reduction of target pest populations and a crucial parameter for judging efficacy. Still, current SIT trials are being hindered by decreased effectiveness due to reduced sexual performance of released males. Here, we explored the possible role of a herbal aphrodisiac in boosting the mating activity of Aedes aegypti.

    Methods: Males were fed one of two diets in this study: experimental extract of Eurycoma longifolia (MSAs) and sugar only (MSOs). Differences in life span, courtship latency, copulation activity and mating success were examined between the two groups.

    Results: No deaths occurred among MSA and MSO males. Life span of MSOs was similar to that of MSAs. The courtship latency of MSAs was shorter than that of MSOs (P<0.01). MSAs had greater copulation success than MSOs (P<0.001). In all female treatments, MSAs mated more than MSOs, but the differences in rate were significant only in the highest female density (P<0.05). In MSAs, mating success varied significantly with female density (P<0.01), with the 20-female group (P<0.01) having the lowest rate. Single MSA had better mating success at the two lowest female densities. In MSOs, there were no significant differences in mating success rate between the different female densities.

    Interpretation & conclusions: Our results suggested that the herbal aphrodisiac, E. longifolia, stimulated the sexual activity of Ae. aegypti and may be useful for improving the mating competitiveness of sterile males, thus improving SIT programmes.

    Matched MeSH terms: Insecticides/pharmacology
  18. Sayyed AH, Moores G, Crickmore N, Wright DJ
    Pest Manag Sci, 2008 Aug;64(8):813-9.
    PMID: 18383197 DOI: 10.1002/ps.1570
    Bacillus thuringiensis Berliner (Bt) crystal (Cry) toxins are expressed in various transgenic crops and are also used as sprays in integrated pest management and organic agricultural systems. The diamondback moth (Plutella xylostella L.) is a major worldwide pest of crucifer crops and one that has readily acquired field resistance to a broad range of insecticides.
    Matched MeSH terms: Insecticides/pharmacology*
  19. Rohani A, Aziz I, Zurainee MN, Rohana SH, Zamree I, Lee HL
    Trop Biomed, 2014 Mar;31(1):159-65.
    PMID: 24862056 MyJurnal
    Chemical insecticides are still considered as important control agents for malaria vector control. However, prolonged use of these chemicals may select mosquito vectors for resistance. In this study, susceptibility status of adult Anopheles maculatus collected from 9 localities in peninsular Malaysia, viz., Jeli, Temerloh, Pos Banun, Senderut, Jeram Kedah, Segamat, Kota Tinggi, Kluang and Pos Lenjang were determined using the standard WHO bioassay method in which the adult mosquitoes were exposed to standard insecticide impregnated papers malathion, permethrin, DDT and deltamethrin--at pre-determined diagnostic dosage. Deltamethrin was most effective insecticide among the four insecticides tested, with the LT50 of 29.53 min, compared to malathion (31.67 min), DDT (47.76 min) and permethrin (48.01 min). The effect of all insecticides on the laboratory strain was greater (with all insecticides demonstrated LT50 < 1 hour) than the field strains (deltamethrin 32.7, malathion 53.0, permethrin 62.0, DDT 67.4 min). An. maculatus exhibited low degree of resistance to all test insecticides, indicating that these chemical insecticides are still effective in the control of malaria vector.
    Matched MeSH terms: Insecticides/pharmacology*
  20. Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, et al.
    Parasit Vectors, 2021 Jun 10;14(1):315.
    PMID: 34112220 DOI: 10.1186/s13071-021-04785-4
    Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries.
    Matched MeSH terms: Insecticides/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links