Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Zainudin NA, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, et al.
    Mol Plant Microbe Interact, 2015 Oct;28(10):1130-41.
    PMID: 26168137 DOI: 10.1094/MPMI-03-15-0068-R
    The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
    Matched MeSH terms: Iron/metabolism
  2. V K, Neela VK
    Virulence, 2020 Dec;11(1):104-112.
    PMID: 31957553 DOI: 10.1080/21505594.2020.1713649
    This study investigates the twitching ability of 28 clinical and five environmental strains of S. maltophilia grown under iron-depleted condition through in-silico, phenotypic and proteomics approaches. Rapid Annotations using Subsystem Technology (RAST) analysis revealed the presence of 21 targets of type IV pilus shared across S. maltophilia strains K279a, R551-3, D457 and JV3. The macroscopic twitching assay showed that only clinical isolates produced a zone of twitching with a mean of 22.00 mm under normal and 25.00 mm under iron-depleted conditions. (p = 0.002). Environmental isolates did not show any significant twitching activity in both conditions tested. Isobaric Tags for Relative and Absolute Quantification (ITRAQ) analysis showed altered expression of twitching motility protein PilT (99.08-fold change), flagellar biosynthesis protein FliC (20.14-fold change), and fimbrial protein (0.70-fold change) in response to iron-depleted condition. Most of the strains that have the ability to twitch under the normal condition, exhibit enhanced twitching during iron limitation.
    Matched MeSH terms: Iron/metabolism*
  3. Zhou C, Yu T, Zhu R, Lu J, Ouyang X, Zhang Z, et al.
    Int J Biol Sci, 2023;19(5):1471-1489.
    PMID: 37056925 DOI: 10.7150/ijbs.77979
    Timosaponin AIII (Tim-AIII), a steroid saponin, exhibits strong anticancer activity in a variety of cancers, especially breast cancer and liver cancer. However, the underlying mechanism of the effects of Tim-AIII-mediated anti-lung cancer effects remain obscure. In this study, we showed that Tim-AIII suppressed cell proliferation and migration, induced G2/M phase arrest and ultimately triggered cell death of non-small cell lung cancer (NSCLC) cell lines accompanied by the release of reactive oxygen species (ROS) and iron accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion. Interestingly, we found that Tim-AIII-mediated cell death was reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Meanwhile, the heat shock protein 90 (HSP90) was predicted and verified as the direct binding target of Tim-AIII by SwissTargetPrediction (STP) and surface plasmon resonance (SPR) assay. Further study showed that Tim-AIII promoted HSP90 expression and Tim-AIII induced cell death was blocked by the HSP90 inhibitor tanespimycin, indicating that HSP90 was the main target of Tim-AIII to further trigger intracellular events. Mechanical analysis revealed that the Tim-AIII-HSP90 complex further targeted and degraded glutathione peroxidase 4 (GPX4), and promoted the ubiquitination of GPX4, as shown by an immunoprecipitation, degradation and in vitro ubiquitination assay. In addition, Tim-AIII inhibited cell proliferation, induced cell death, led to ROS and iron accumulation, MDA production, GSH depletion, as well as GPX4 ubiquitination and degradation, were markedly abrogated when HSP90 was knockdown by HSP90-shRNA transfection. Importantly, Tim-AIII also showed a strong capacity of preventing tumor growth by promoting ferroptosis in a subcutaneous xenograft tumor model, whether C57BL/6J or BALB/c-nu/nu nude mice. Together, HSP90 was identified as a new target of Tim-AIII. Tim-AIII, by binding and forming a complex with HSP90, further targeted and degraded GPX4, ultimately induced ferroptosis in NSCLC. These findings provided solid evidence that Tim-AIII can serve as a potential candidate for NSCLC treatment.
    Matched MeSH terms: Iron/metabolism
  4. Krishnamoorthy A, Hadi FA, Naidu A, Sathar J
    Med J Malaysia, 2017 02;72(1):53-54.
    PMID: 28255141
    Anaemia is a common condition in Malaysia, and is mostly due to iron deficiency. In many cases, allogeneic blood transfusion (ABT) is administered unnecessarily to treat anaemia. Patient blood management (PBM) is a concept whereby a patient becomes his or her "own blood bank", instead of receiving ABT. The concept encompasses three pillars namely optimising erythropoiesis, minimising blood loss and harnessing human physiological reserve. We present a safe and fruitful outcome of managing severe anaemia without utilising any ABT, made possible with the PBM approach including administration of intravenous iron.
    Matched MeSH terms: Iron Metabolism Disorders
  5. Sorribes-Dauden R, Peris D, Martínez-Pastor MT, Puig S
    Comput Struct Biotechnol J, 2020;18:3712-3722.
    PMID: 33304466 DOI: 10.1016/j.csbj.2020.10.044
    Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
    Matched MeSH terms: Iron Metabolism Disorders
  6. Azemin WA, Alias N, Ali AM, Shamsir MS
    J Biomol Struct Dyn, 2023 Feb;41(2):681-704.
    PMID: 34870559 DOI: 10.1080/07391102.2021.2011415
    Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Iron/metabolism
  7. Wbin-Wan-Ibrahim WA, Mirza EH, Akbar Ali SF
    Pak J Pharm Sci, 2013 Jul;26(4):823-6.
    PMID: 23811465
    Heavy metals in cigarette tobacco such as iron may cause a serious damage on human health. Surveys showed that the accumulation of certain toxic heavy metals like cadmium, mercury, iron is very often due to the effect of smoking. This work involved 15 volunteers in two randomly divided groups having the habit of cigarette smoking over 15 cigarettes / day. Concentration level of iron in blood and urine before and after treatment using the herbal medicine, widely used in Europe, is analyzed. Determination of Iron concentration in blood and urine was calculated by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) according to the procedure DIN EN ISO 11885 ("E22" from April 1998). The analysis shows that the concentration of iron in blood and urine samples in both groups increased in some volunteers instead of decrease. The independent T-test shows that the mean of iron concentration in the group A and group B had no significant difference (p>0.05). The results suggested that the herbal medicine under test does not have significant influence on reduction of iron concentration levels.
    Matched MeSH terms: Iron/metabolism*
  8. Ismail A
    Biochem Biophys Res Commun, 1988 Jan 15;150(1):18-24.
    PMID: 2962581
    This study was initiated to determine the mechanism of iron-uptake in Salmonella typhi. When stressed for iron, microorganisms produce siderophores to obtain the necessary nutrient. Generally two types of siderophores exist: the phenolate-type predominantly produced by bacteria and the hydroxamate-type commonly secreted by fungi. Results of this investigation showed that S. typhi produced siderophores of the phenolate-type since culture supernatant of the organism grown under iron-deprivation supported the growth of the phenolate-dependent auxotroph. The culture supernatant when extracted for phenolate siderophores, also supported the growth of the phenolate auxotroph but not the hydroxamate auxotroph. Production of phenolate-type siderophores were further confirmed using biochemical assays. These results showed that S. typhi utilized the high-affinity iron transport system to obtain the necessary iron.
    Matched MeSH terms: Iron/metabolism
  9. Thambiah, S., George, E., Nor Aini, U., Sathar, J., Zarida, H., Mokhtar, A.B.
    MyJurnal
    Management of Beta (β)-thalassaemia intermedia in contrast to β-thalassaemia major patients has no clear guidelines as to indicators of adequate transfusion. Regular blood transfusion suppresses bone marrow erythropoietic activity. Serum soluble transferrin receptor (sTfR) concentration is a marker for erythropoietic activity, with increased sTfR being associated with functional iron deficiency and increased erythropoietic activity. This study aimed to determine the use of sTfR as an indicator of adequate transfusion in adult β-thalassaemia intermedia patients. A cross-sectional study was conducted at Hospital Ampang, Malaysia, for six months. Patient group included six β-thalassaemia intermedia and 34 HbE-β-thalassaemia transfused patients. None of the patients were on regular monthly blood transfusions as in β-thalassaemia major. The control group comprised of 16 healthy subjects with normal haematological parameters. Haemoglobin (Hb) analysis, sTfR and ferritin assays were performed. Hb and HbA percentages (%) were found to be significantly lower in patients compared to the controls, while HbE%, HbF%, sTfR and ferritin were significantly higher in patients. An inverse relationship was found in the controls between HbF% with Hb (r = -0.515, p < 0.05) and HbA% (r = -0.534, p < 0.05). In patients, sTfR showed an inverse relationship with HbA% (r = -0.618, p = 0.000) and a positive correlation with HbE% (r = 0.418, p = 0.007) and HbF% (r = 0.469, p = 0.002). Multivariate analysis showed that HbA% (r = 2.875, p = 0.048), HbE% (r = 2.872, p = 0.020) and HbF% (r = 2.436, p = 0.013) best predicted sTfR independently in patients. Thus, sTfR is a useful marker for erythropoiesis. The elevated sTfR in these patients indicate that the transfusion regimen used was inadequate to suppress ineffective erythropoiesis. Hb levels may not be the best target for monitoring transfusion treatment in β-thalassaemia intermedia patients, but the use of sTfR is helpful in individualising transfusion regimens.
    Matched MeSH terms: Iron Metabolism Disorders
  10. ENG LL, DEWITT G
    Med J Malaysia, 1964 Jun;18:269-75.
    PMID: 14199445
    Matched MeSH terms: Iron/metabolism*
  11. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, et al.
    Molecules, 2022 May 07;27(9).
    PMID: 35566360 DOI: 10.3390/molecules27093011
    Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
    Matched MeSH terms: Iron/metabolism
  12. Bhat IU, Mauris EN, Khanam Z
    Int J Phytoremediation, 2016 Sep;18(9):918-23.
    PMID: 26940261 DOI: 10.1080/15226514.2016.1156637
    The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p 1 and <1, respectively, further supporting its metal hyperaccumulator properties.
    Matched MeSH terms: Iron/metabolism*
  13. Meera M, Agamuthu P
    Int J Phytoremediation, 2012 Feb;14(2):186-99.
    PMID: 22567704
    Terrestrial plants as potential phytoremediators for remediation of surface soil contaminated with toxic metals have gained attention in clean-up technologies. The potential of kenaf (Hibiscus cannabinus L.) to offer a cost-effective mechanism to remediate Fe and As from landfill leachate-contaminated soil was investigated. Pot experiment employing soil polluted with treatments of Jeram landfill leachate was conducted for 120 days. Plants were harvested after 8th, 12th, and 16th weeks of growth. Accumulation of Fe and As was assessed based on Bioconcentration Factor and Translocation Factor. Results showed sequestration of 0.06-0.58 mg As and 66.82-461.71 mg Fe per g plant dry weight in kenaf root, which implies that kenaf root can be an bioavailable sink for toxic metals. Insignificant amount of Fe and As was observed in the aerial plant parts (< 12% of total bioavailable metals). The ability of kenaf to tolerate these metals and avoid phytotoxicity could be attributed to the stabilization of the metals in the roots and hence reduction of toxic metal mobility (TF < 1). With the application of leachate, kenaf was also found to have higher biomass and subsequently recorded 11% higher bioaccumulation capacity, indicating its suitability for phytoextraction of leachate contaminated sites.
    Matched MeSH terms: Iron/metabolism*
  14. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Iron/metabolism
  15. Jatuponwiphat T, Chumnanpuen P, Othman S, E-Kobon T, Vongsangnak W
    Microb Pathog, 2019 Feb;127:257-266.
    PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013
    Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
    Matched MeSH terms: Iron/metabolism*
  16. Foong LC, Imam MU, Ismail M
    J Agric Food Chem, 2015 Oct 21;63(41):9029-36.
    PMID: 26435326 DOI: 10.1021/acs.jafc.5b03420
    The present study was aimed at utilizing defatted rice bran (DRB) protein as an iron-binding peptide to enhance iron uptake in humans. DRB samples were treated with Alcalase and Flavourzyme, and the total extractable peptides were determined. Furthermore, the iron-binding capacities of the DRB protein hydrolysates were determined, whereas iron bioavailability studies were conducted using an in vitro digestion and absorption model (Caco-2 cells). The results showed that the DRB protein hydrolysates produced by combined Alcalase and Flavourzyme hydrolysis had the best iron-binding capacity (83%) after 90 min of hydrolysis. The optimal hydrolysis time to produce the best iron-uptake in Caco-2 cells was found to be 180 min. The results suggested that DRB protein hydrolysates have potent iron-binding capacities and may enhance the bioavailability of iron, hence their suitability for use as iron-fortified supplements.
    Matched MeSH terms: Iron/metabolism*
  17. George E, Adeeb N, Ahmad J
    Med J Malaysia, 1980 Dec;35(2):129-30.
    PMID: 7266404
    Serum ferritin concentration has been measured in pregnant women at their first antenatal visit. Results were analysed according to trimesters. With progression of the pregnancy there is a fall in serum ferritin concentrations. Haemoglobin and red cell indices cannot be used to predict iron status supplemental iron therapy raised the serum ferritin levels.
    Matched MeSH terms: Iron/metabolism*
  18. Oppenheimer SJ
    Parasitol. Today (Regul. Ed.), 1989 Mar;5(3):77-9.
    PMID: 15463183
    Iron deficiency is common in the developing world; consequently, programmes of presumptive therapy and mass supplementation have been introduced in several countries. In this article Stephen Oppenheimer suggests caution, as recent evidence suggests that these practices may actually increase the likelihood of the subject developing patent malaria in endemic areas. This may be especially significant in infants, who are less likely to be immune to malaria, and in pregnant women, who are often routinely given iron supplements and in whom malaria may damage the foetus.
    Matched MeSH terms: Iron Metabolism Disorders
  19. Kalidasan V, Joseph N, Kumar S, Awang Hamat R, Neela VK
    PMID: 30483485 DOI: 10.3389/fcimb.2018.00401
    Stenotrophomonas maltophilia is a multi-drug-resistant global opportunistic nosocomial pathogen, which possesses a huge number of virulence factors and antibiotics resistance characteristics. Iron has a crucial contribution toward growth and development, cell growth and proliferation, and pathogenicity. The bacterium found to acquire iron for its cellular process through the expression of two iron acquisition systems. Two distinct pathways for iron acquisition are encoded by the S. maltophilia genome-a siderophore-and heme-mediated iron uptake system. The entAFDBEC operon directs the production of the enterobactin siderophore of catecholate in nature, while heme uptake relies on hgbBC and potentially hmuRSTUV operon. Fur and sigma factors are regulators of S. maltophilia under iron-limited condition. Iron potentially act as a signal which plays an important role in biofilm formation, extracellular polymeric substances (EPS), extracellular enzymes production, oxidative stress response, diffusible signal factor (DSF) and siderophore production in S. maltophilia. This review summarizes the current knowledge of iron acquisition in S. maltophilia and the critical role of iron in relation to its pathogenicity.
    Matched MeSH terms: Iron/metabolism*
  20. Aris A, Sharratt PN
    Environ Technol, 2006 Oct;27(10):1153-61.
    PMID: 17144264
    The effect of initial dissolved oxygen concentration (IDOC) on Fenton's reagent degradation of a dyestuff, Reactive Black 5 was explored in this study. The study was designed, conducted and analysed based on Central Composite Rotatable Design using a 3-1 lab-scale reactor. The participation of O2 in the process was experimentally observed and appears to be affected by the dosage of the reagents used in the study. The IDOC was found to have a significant influence on the process. Reducing the IDOC from 7.5 mg l(-1) to 2.5 mg l(-1) increased the removal of TOC by an average of about 10%. Reduction of IDOC from 10 mg l(-1) to 0 mg l(-1) enhanced the TOC removal by about 30%. The negative influence of IDOC is likely to be caused by the competition between the O2 and the reagents for the organoradicals. A model describing the relationship between initial TOC removal, reagent dosage and IDOC has also been developed.
    Matched MeSH terms: Iron/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links