Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Hasiah AH, Elsheikh HA, Abdullah AS, Khairi HM, Rajion MA
    Vet J, 2000 Nov;160(3):267-72.
    PMID: 11061964
    The effect of phenobarbitone against signal grass (Brachiaria decumbens) toxicity was studied in 26 male crossbred sheep. Grazing on signal grass significantly decreased the concentration of cytochrome P-450 and the activity of drug metabolizing enzymes, viz. aminopyrine-N-demethylase, aniline-4-hydroxylase, UDP- glucuronyltransferase and glutathione-S-transferase in liver and kidneys of affected sheep.Oral administration of phenobarbitone (30 mg/kg body weight) for five consecutive days before grazing on B. decumbens pasture, and thereafter, for three consecutive days every two weeks, resulted in significant increases in hepatic and renal activities of drug-metabolizing enzymes. The induction of drug metabolizing activity in sheep grazing on signal grass group was found to be lower than in animals given phenobarbitone alone. Induction by phenobarbitone provided a degree of protection against the toxic effects of B. decumbens as indicated by the delay in the appearance of signs of toxicity. Furthermore, these were much milder compared to those in the sheep not treated with phenobarbitone. The present study suggests that phenobarbitone-type cytochrome P-450 isoenzyme-induction may increase resistance against signal grass (B. decumbens) toxicity in sheep.
    Matched MeSH terms: Kidney/drug effects
  2. Jarrar QB, Hakim MN, Zakaria ZA, Cheema MS, Moshawih S
    Ultrastruct Pathol, 2020 Jan 02;44(1):130-140.
    PMID: 31967489 DOI: 10.1080/01913123.2020.1717705
    Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.
    Matched MeSH terms: Kidney/drug effects*
  3. Choong CL, Wong HS, Lee FY, Lee CK, Kho JV, Lai YX, et al.
    Transplant Proc, 2018 Oct;50(8):2515-2520.
    PMID: 30316389 DOI: 10.1016/j.transproceed.2018.04.024
    BACKGROUND: Inhibition of calcineurin inhibitor (CNI) metabolism with diltiazem reduces the dose of tacrolimus required to achieve its therapeutic blood concentration in kidney transplant recipients (KTRs). This cost-savings maneuver is practiced in several countries, including Malaysia, but the actual impacts of diltiazem on tacrolimus blood concentration, dose-response relationship, cost-savings, and safety aspects are unknown.

    METHODS: This retrospective study was performed on all KTRs ≥18 years of age at our center from January 1, 2006 to December 31, 2015, who were prescribed diltiazem as tacrolimus-sparing agent. Blood tacrolimus trough level (TacC0) and other relevant clinical data for 70 eligible KTRs were reviewed.

    RESULTS: The dose of 1 mg tacrolimus resulted in a median TacC0 of 0.83 ± 0.52 ng/mL. With the introduction of a 90-mg/d dose diltiazem, there was a significant TacC0 increase to 1.39 ± 1.31 ng/mL/mg tacrolimus (P < .01). A further 90-mg increase in diltiazem to 180 mg/d resulted in a further increase of TacC0 to 1.66 ± 2.58 ng/mL/mg tacrolimus (P = .01). After this, despite a progressive increment of every 90-mg/d dose diltiazem to 270 mg/d and 360 mg/d, there was no further increment in TacC0 (1.44 ± 1.15 ng/mL/mg tacrolimus and 1.24 ± 0.94 ng/mL/mg tacrolimus, respectively [P < .01]). Addition of 180 mg/d diltiazem reduced the required tacrolimus dose to 4 mg/d, resulting in a cost-savings of USD 2045.92 per year (per patient) at our center. Adverse effects reported within 3 months of diltiazem introduction were bradycardia (1.4%) and postural hypotension (1.4%), which resolved after diltiazem dose reduction.

    CONCLUSION: Coadministration of tacrolimus and diltiazem in KTRs appeared to be safe and resulted in a TacC0 increment until reaching a 180-mg/d total diltiazem dose, at which point it began to decrease. This approach will result in a marked savings in immunosuppression costs among KTRs in Malaysia.

    Matched MeSH terms: Kidney/drug effects
  4. Koriem KM, Abdelhamid AZ, Younes HF
    Toxicol. Mech. Methods, 2013 Feb;23(2):134-43.
    PMID: 22992185 DOI: 10.3109/15376516.2012.730561
    Caffeic acid (CA) (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids. Hydroxycinnamic acid is the major subgroup of phenolic compounds. Methamphetamine (METH) is a potent addictive psychostimulant. Chronic use and acute METH intoxication can cause substantial medical consequences, including spleen, kidney, liver and heart. The objective of the present study was to evaluate the antioxidant activity of CA to protect against oxidative stress and DNA damage to various organs in METH toxicity. Thirty-two male Sprague Dawley (SD) rats were divided into four equal groups: group 1 was injected (i.p) with saline (1 mL/kg) while groups 2,3 and 4 were injected (i.p) with METH (10 mg/kg) twice a day over five days period. Where 100 & 200 mg/kg of CA were injected (i.p) into groups 3 and 4, respectively one day before exposure to METH injections. Tissue antioxidants and DNA content were evaluated in different tissues. METH decreased glutathione (GSH) and glutathione peroxidase (GPx) levels while increased malondialdehyde (MDA), catalase (CAT) and protein carbonyl levels in brain (hypothalamus), liver, and kidney tissues of rats. METH increased hyperdiploidy in these tissues and DNA damage results. Prior treatment of CA to animals exposed to METH restores the above parameters to the normal levels and preserves the DNA content of these tissues. These results were supported by histopathological investigations. In conclusion, METH induced oxidative stress and DNA damage and pretreatment of CA before METH injections prevented tissue oxidative stress and DNA damage in METH-treated animals.
    Matched MeSH terms: Kidney/drug effects
  5. Tan BL, Kassim NM, Mohd MA
    Toxicol Lett, 2003 Aug 28;143(3):261-70.
    PMID: 12849686
    The effects of bisphenol A and nonylphenol on pubertal development in the intact juvenile/peripubertal male Sprague-Dawley rats was observed in this study from PND23-52/53. Two groups of rats were administered orally with either 100 mg/kg body weight of nonylphenol or bisphenol A. Another group of rats were administered orally with a mixture of 100 mg/kg body weight of nonylphenol and bisphenol A. Control group was administered with the vehicle of Tween-80 with corn oil (1:9 v/v). Observations made in this study included growth, age at preputial separation, thyroid, liver, testis and kidney weight and histology, epididymal and seminal vesicle plus coagulation gland weight. Nonylphenol and bisphenol A have been observed to cause delay in puberty onset as well as testicular damage in the treatment groups when compared to the control; spermatogenesis was affected in most treated rats. Bisphenol A also caused the enlargement of the kidney and hydronephrosis. Administration of nonylphenol and bisphenol A as a mixture has caused less than additive effects.
    Matched MeSH terms: Kidney/drug effects
  6. Iqbal MO, Yahya EB
    Tissue Cell, 2021 Oct;72:101525.
    PMID: 33780659 DOI: 10.1016/j.tice.2021.101525
    Aminoglycoside antibiotics are widely employed clinically due to their powerful bactericidal activities, less bacterial resistance compared to beta lactam group and low cost. However, their use has been limited in recent years due to their potential induction of nephrotoxicity. Here we investigate the possibility of reversing nephrotoxicity caused by gentamicin in rat models by using ethanolic crude extract of the medicinal plant Jatropha Mollissima. Nephrotoxic male Wistar rats was obtained by gentamicin antibiotic, which then treated with two doses of J. mollissima crude extract for 3 weeks with monitoring their parameter in weekly base. Our results indicate that J. mollissima crude extract at both doses has strong protection ability against gentamicin nephrotoxicity, most of tested parameters backed to normal values after few days from the administration of the crude extract, which could be due to the antagonized the biochemical action of gentamicin on the proximal tubules of the kidney. The results of histopathologic analysis showed observable improvement in J. mollissima treated groups compared with untreated groups. Our findings suggests the J. mollissima has exceptional nephron protection potentials able to reverse the nephrotoxicity caused by gentamicin antibiotic.
    Matched MeSH terms: Kidney/drug effects
  7. Go KW, Teo SM
    Med J Malaysia, 2006 Oct;61(4):447-50.
    PMID: 17243522
    Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disease with renal involvement being one of the most frequent and serious manifestations of the disease. The aim of the study is to analyze the treatment and renal outcome of patients with lupus nephritis (LN) WHO class III and IV on cyclophosphamide (CYC). We retrospectively identified 41 patients with biopsy proven LN who was given either oral or intravenous CYC. The male: female ratio was 4:37; with a mean age of 31.7 +/- 9.8 years at presentation. 36 patients (87.8%) had LN class IV and only five patients (12.2%) with LN class III. The mean serum creatinine at presentation was 87.4 +/- 37.2 micromol/L with mean follow-up of 84 +/- 78 months. A total of 30 patients (73.2%) completed 12 courses of IV CYC and one patient (2.4%) completed three months of oral CYC. 71.0% (n = 22) had complete response (CR), 25.8% (n = 8) had partial response and 3.2% (n = 1) had no response (NR). Of the remaining 11 patients, two patients (4.9%) died during the treatment, three patients (7.3%) defaulted treatment and five patients (12.2%) are still receiving ongoing treatment. Presence of hypertension (p < 0.003) and evidence of chronicity on renal biopsy (p < 0.016) were significantly correlated with the progressive deterioration of renal function in our population. In conclusion, hypertension and evidence of chronicity on renal biopsy, proved to be risk factors for progressive renal impairment in our study population. The achieved global outcome can be considered good.
    Study site: Hospital Ipoh, Ipoh, Perak, Malaysia
    Matched MeSH terms: Kidney/drug effects*
  8. Ngen CC, Cheong IK
    Med J Malaysia, 1989 Sep;44(3):199-203.
    PMID: 2626134
    Ten patients on long term lithium therapy (mean four years, range 1-10.5 years) were subjected to various renal, thyroid, haematological, cardiac and endocrine tests. There was impaired urinary concentrating ability in seven subjects, which was not responsive to vasopressin stimulation, suggesting a partial nephrogenic diabetes insipidus. Nine subjects had metabolic acidosis with higher urinary pH than expected suggesting presence of acidification defect in the kidney. No significant change in renal function, thyroid function, ECG or haematological parameters were detected. Our findings concur with previous reports from the West regarding the safety of lithium administration.
    Matched MeSH terms: Kidney/drug effects
  9. Nassar I, Pasupati T, Judson JP, Segarra I
    Malays J Pathol, 2010 Jun;32(1):1-11.
    PMID: 20614720 MyJurnal
    Imatinib, a selective tyrosine kinase inhibitor, is the first line treatment against chronic myelogenous leukaemia (CML) and gastrointestinal stromal tumors (GIST). Several fatal cases have been associated with imatinib hepatotoxicity. Acetaminophen, an over-the-counter analgesic, anti-pyretic drug, which can cause hepatotoxicity, is commonly used in cancer pain management. We assessed renal and hepatic toxicity after imatinib and acetaminophen co-administration in a preclinical model. Four groups of male ICR mice (30-35 g) were fasted overnight and administered either saline solution orally (baseline control), imatinib 100 mg/kg orally (control), acetaminophen 700 mg/kg intraperitoneally (positive control) or co-administered imatinib 100 mg/kg orally and acetaminophen 700 mg/kg intraperitoneally (study group), and sacrificed at 15 min, 30 min, 1 h, 2 h, 4 h and 6 h post-administration (n = 4 per time point). The liver and kidneys were harvested for histopathology assessment. The liver showed reversible cell damage like feathery degeneration, microvesicular fatty change, sinusoidal congestion and pyknosis, when imatinib or acetaminophen were administered separately. The damage increased gradually with time, peaked at 2 h but resolved by 4 h. When both drugs were administered concurrently, the liver showed irreversible damage (cytolysis, karyolysis and karyorrhexis) which did not resolve by 6 h. Very minor renal changes were observed. Acetaminophen and imatinib co-administration increased hepatoxicity which become irreversible, probably due to shared P450 biotransformation pathways and transporters in the liver.
    Matched MeSH terms: Kidney/drug effects*
  10. Chong FW, Chakravarthi S, Nagaraja HS, Thanikachalam PM, Lee N
    Malays J Pathol, 2009 Jun;31(1):35-43.
    PMID: 19694312
    Cyclosporine A (CsA), a calcineurin inhibitor produced by the fungi Trichoderma polysporum and Cylindrocarpon lucidum, is an immunosuppressant prescribed in organ transplants to prevent rejection. Its adverse effect on renal dysfunction has limited its use in a clinical setting. Apigenin (4',5',7'-Trihydroxyflavone), a herbal extract, with anti-inflammatory and anti-tumour properties, has been investigated for properties to reverse this adverse effect. This research was conducted to establish a standard protocol for immunohistochemical estimation of Transforming Growth Factor beta (TGF-beta) expression, as an indicator of Cyclosporine A induced damage, and to observe whether apoptotic index and TGF-beta expression can be used to assess effects of Apigenin on CsA induced renal dysfunction. Six groups of 5 male Sprague-Dawley albino rats each were dosed once daily for 21 days, as follows: (1) negative control--oral corn oil, (2) positive control--Cyclosporine A (25 mg/kg), (3) Group 3--Apigenin (20 mg/kg), (4) Group 4--Cyclosporine A (25 mg/kg) +Apigenin (10 mg/kg), (5) Group 5--Cyclosporine A (25 mg/kg) +Apigenin (15 mg/kg) and (6) Group 6--Cyclosporine A (25 mg/kg) +Apigenin (20 mg/kg). Cyclosporine A was administered intra-peritoneally while Apigenin was given orally. The rat kidneys were harvested and examined microscopically to assess the apoptotic index, and stained by immunohistochemistry for multifunctioning polypeptide TGF-beta expression. A high apoptotic index and TGF-beta intensity was observed in the Cyclosporine A group. Apigenin significantly reduced the both apoptotic index and TGF-beta intensity. The apoptotic index correlated with TGF-beta intensity, especially in glomeruli. This study indicates that Cyclosporine A can enhance the TGF-beta expression in rat kidney, signifying accelerated apoptosis. TGF-beta and apoptotic index may be used to assess Apigenin and its effect on Cyclosporine A induced renal damage.
    Matched MeSH terms: Kidney/drug effects
  11. Rajandram R, Yap NY, Ong TA, Mun KS, Mohamad Wali HA, Hasan MS, et al.
    Malays J Pathol, 2017 Apr;39(1):47-53.
    PMID: 28413205 MyJurnal
    INTRODUCTION: In recent years, prolonged ketamine abuse has been reported to cause urinary tract damage. However, there is little information on the pathological effects of ketamine from oral administration. We aimed to study the effects of oral ketamine on the urinary tract and the reversibility of these changes after cessation of ketamine intake.

    METHODS: Rats were fed with illicit (a concoction of street ketamine) ketamine in doses of 100 (N=12), or 300 mg/kg (N=12) for four weeks. Half of the rats were sacrificed after the 4-week feeding for necropsy. The remaining rats were taken off ketamine for 8 weeks to allow for any potential recovery of pathological changes before being sacrificed for necropsy. Histopathological examination was performed on the kidney and urinary bladder.

    RESULTS: Submucosal bladder inflammation was seen in 67% of the rats fed with 300 mg/kg illicit ketamine. No bladder inflammation was observed in the control and 100 mg/kg illicit ketamine groups. Renal changes, such as interstitial nephritis and papillary necrosis, were observed in rats given illicit ketamine. After ketamine cessation, no inflammation was observed in the bladder of all rats. However, renal inflammation remained in 60% of the rats given illicit ketamine. No dose-effect relationship was established between oral ketamine and changes in the kidneys.

    CONCLUSION: Oral ketamine caused pathological changes in the urinary tract, similar to that described in exposure to parenteral ketamine. The changes in the urinary bladder were reversible after short-term exposure.

    Matched MeSH terms: Kidney/drug effects
  12. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Hye Khan MA, Rathore HA
    Br J Nutr, 2012 Jan;107(2):218-28.
    PMID: 21733307 DOI: 10.1017/S0007114511002716
    The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague-Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.
    Matched MeSH terms: Kidney/drug effects
  13. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT
    Br J Nutr, 2012 Oct;108(7):1194-201.
    PMID: 22152092
    Zingiber officinale (ZO), commonly known as ginger, has been traditionally used in the treatment of diabetes mellitus. Several studies have reported the hypoglycaemic properties of ginger in animal models. The present study evaluated the antihyperglycaemic effect of its aqueous extract administered orally (daily) in three different doses (100, 300, 500 mg/kg body weight) for a period of 30 d to streptozotocin (STZ)-induced diabetic rats. A dose-dependent antihyperglycaemic effect revealed a decrease of plasma glucose levels by 38 and 68 % on the 15th and 30th day, respectively, after the rats were given 500 mg/kg. The 500 mg/kg ZO significantly (P<0·05) decreased kidney weight (% body weight) in ZO-treated diabetic rats v. control rats, although the decrease in liver weight (% body weight) was not statistically significant. Kidney glycogen content increased significantly (P<0·05) while liver and skeletal muscle glycogen content decreased significantly (P<0·05) in diabetic controls v. normal controls. ZO (500 mg/kg) also significantly decreased kidney glycogen (P<0·05) and increased liver and skeletal muscle glycogen in STZ-diabetic rats when compared to diabetic controls. Activities of glucokinase, phosphofructokinase and pyruvate kinase in diabetic controls were decreased by 94, 53 and 61 %, respectively, when compared to normal controls; and ZO significantly increased (P<0·05) those enzymes' activities in STZ-diabetic rats. Therefore, the present study showed that ginger is a potential phytomedicine for the treatment of diabetes through its effects on the activities of glycolytic enzymes.
    Matched MeSH terms: Kidney/drug effects
  14. Ilyas S, Tabasum R, Iftikhar A, Nazir M, Hussain A, Hussain A, et al.
    Sci Rep, 2021 01 18;11(1):1708.
    PMID: 33462261 DOI: 10.1038/s41598-020-80579-5
    Ifosfamide is a widely used chemotherapeutic agent having broad-spectrum efficacy against several tumors. However, nephro, hepato, neuro cardio, and hematological toxicities associated with ifosfamide render its use limited. These side effects could range from organ failure to life-threatening situations. The present study aimed to evaluate the attenuating efficiency of Berberis vulgaris root extract (BvRE), a potent nephroprotective, hepatoprotective, and lipid-lowering agent, against ifosfamide-induced toxicities. The study design comprised eight groups of Swiss albino rats to assess different dose regimes of BvRE and ifosfamide. Biochemical analysis of serum (serum albumin, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, and triglycerides) along with complete blood count was performed. Kidney, liver, brain, and heart tissue homogenates were used to find malondialdehyde, catalase, and glutathione S-transferase levels in addition to the acetylcholinesterase of brain tissue. The results were further validated with the help of the histopathology of the selected organs. HeLa cells were used to assess the effect of BvRE on ifosfamide cytotoxicity in MTT assay. The results revealed that pre- and post-treatment regimens of BvRE, as well as the combination therapy exhibited marked protective effects against ifosfamide-induced nephro, hepato, neuro, and cardiotoxicity. Moreover, ifosfamide depicted a synergistic in vitro cytotoxic effect on HeLa cells in the presence of BvRE. These results corroborate that the combination therapy of ifosfamide with BvRE in cancer treatment can potentiate the anticancer effects of ifosfamide along with the amelioration of its conspicuous side effects.
    Matched MeSH terms: Kidney/drug effects*
  15. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
    Matched MeSH terms: Kidney/drug effects
  16. Lakshmanan H, Raman J, Pandian A, Kuppamuthu K, Nanjian R, Sabaratam V, et al.
    Regul Toxicol Pharmacol, 2016 Aug;79:25-34.
    PMID: 27177820 DOI: 10.1016/j.yrtph.2016.05.010
    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P 
    Matched MeSH terms: Kidney/drug effects*
  17. Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, et al.
    Regul Toxicol Pharmacol, 2017 Mar;84:35-44.
    PMID: 27993652 DOI: 10.1016/j.yrtph.2016.12.007
    This study investigated the pretreatment and post-treatment effects of dipyridamole (20 mg/kg/day, p.o.) in gentamicin-induced acute nephrotoxicity in rats. Rats were administered gentamicin (100 mg/kg/day, i.p.) for 8 days. Gentamicin-administered rats exhibited renal structural and functional changes as assessed in terms of a significant increase in serum creatinine and urea and kidney weight to body weight ratio as compared to normal rats. Renal histopathological studies revealed a marked incidence of acute tubular necrosis in gentamicin-administered rats. These renal structural and functional abnormalities in gentamicin-administered rats were accompanied with elevated serum uric acid level, and renal inflammation as assessed in terms of decrease in interleukin-10 levels. Dipyridamole pretreatment in gentamicin-administered rats afforded a noticeable renoprotection by markedly preventing renal structural and functional abnormalities, renal inflammation and serum uric acid elevation. On the other hand, dipyridamole post-treatment did not significantly prevent uric acid elevation and renal inflammation, and resulted in comparatively less protection on renal function although it markedly reduced the incidence of tubular necrosis. In conclusion, uric acid elevation and renal inflammation could play key roles in gentamicin-nephrotoxicity. Dipyridamole pretreatment markedly prevented gentamicin-induced acute nephrotoxicity, while its post-treatment resulted in comparatively less renal functional protection.
    Matched MeSH terms: Kidney/drug effects*
  18. Mustafa MR, Dharmani M, Kunheen NK, Sim MK
    Regul. Pept., 2004 Aug 15;120(1-3):15-22.
    PMID: 15177916
    An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10(-15) M DAA-I, while effective attenuation was only seen with 10(-9) M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.
    Matched MeSH terms: Kidney/drug effects*
  19. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
    Matched MeSH terms: Kidney/drug effects
  20. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
    Matched MeSH terms: Kidney/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links