Displaying all 7 publications

Abstract:
Sort:
  1. Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Dec;2(12):960-5.
    PMID: 23593576 DOI: 10.1016/S2221-1691(13)60007-6
    To investigate the antioxidant activity of methanolic extracts of Lantana camara (L. camara) various parts and the determination of their total phenolics content.
    Matched MeSH terms: Lantana/chemistry*
  2. Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2012 Sep 19;17(9):11185-98.
    PMID: 22992785
    Lantadenes are pentacyclic triterpenoids present in the leaves of the plant Lantana camara. In the present study, in vitro antioxidant activity and free radical scavenging capacity of lantadene A was evaluated using established in vitro models such as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•), superoxide anion scavenging activities and ferrous ion chelating assay. Interestingly, lantadene A showed considerable in vitro antioxidant, free radical scavenging capacity activities in a dose dependant manner when compared with the standard antioxidant in nitric oxide scavenging, superoxide anion radical scavenging and ferrous ion chelating assay. These findings show that the lantadene A possesses antioxidant activity with different mechanism of actions towards the different free radicals tested. Since lantadene A is a very popular drug in modern medicine, it is a promising candidate for use as an antioxidant and hepatoprotective agent.
    Matched MeSH terms: Lantana/chemistry*
  3. Grace-Lynn C, Chen Y, Latha LY, Kanwar JR, Jothy SL, Vijayarathna S, et al.
    Molecules, 2012 Nov 23;17(12):13937-47.
    PMID: 23178309 DOI: 10.3390/molecules171213937
    The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg) showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05). Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.
    Matched MeSH terms: Lantana/chemistry
  4. Pour BM, Latha LY, Sasidharan S
    Molecules, 2011 May 03;16(5):3663-74.
    PMID: 21540795 DOI: 10.3390/molecules16053663
    BACKGROUND: The objective of this study was to investigate the toxicity of Lantana camara methanol extract.

    METHODS: In order to evaluate the toxicity of Lantana camara, the acute toxicity of the methanolic extract on adult mice and cytotoxicity test on Vero cell line were investigated. A fixed large dose of 2 g/kg body weight of L. camara leaf extract was administrated by a single oral gavage according to the OECD procedure.

    RESULTS: In 2 weeks, L. camara leaf extract showed no obvious acute toxicity. While female mice lost body weight after being treated with single dose of leaf extract in acute toxicity test, male ones lost organ mass, particularly for heart and kidney. The biochemical liver function tests showed significantly elevated TBIL and ALT in the L. camara leaf extract treated female mice group compared with the control group. Cytotoxicity effect of leaf extract of L. camara was estimated through a MTT assay. Cytotoxicity tests on Vero cell line disclosed that leaf extract at concentrations up to 500 µg/mL inhibited the growth of cells 2.5 times less than did Triton 100 × 1%. More interestingly, the cytotoxicity initiated to decline at elevated concentrations of this extract.

    CONCLUSIONS: The results of both tests confirm that L. camara shows a pro toxic effect.

    Matched MeSH terms: Lantana/chemistry*
  5. Swamy MK, Sinniah UR, Akhtar MS
    PMID: 26783409 DOI: 10.1155/2015/506413
    We investigated the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from Lantana camara leaves and their antioxidant and antibacterial activities. Further, GC-MS analysis was carried out to identify the bioactive chemical constituents occurring in the active extract. The results revealed the presence of various phytocompounds in the extracts. The methanol solvent recovered higher extractable compounds (14.4% of yield) and contained the highest phenolic (92.8 mg GAE/g) and flavonoid (26.5 mg RE/g) content. DPPH radical scavenging assay showed the IC50 value of 165, 200, 245, and 440 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. The hydroxyl scavenging activity test showed the IC50 value of 110, 240, 300, and 510 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. Gram negative bacterial pathogens (E. coli and K. pneumoniae) were more susceptible to all extracts compared to Gram positive bacteria (M. luteus, B. subtilis, and S. aureus). Methanol extract had the highest inhibition activity against all the tested microbes. Moreover, methanolic extract of L. camara contained 32 bioactive components as revealed by GC-MS study. The identified major compounds included hexadecanoic acid (5.197%), phytol (4.528%), caryophyllene oxide (4.605%), and 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (3.751%).
    Matched MeSH terms: Lantana
  6. Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, Al-Obaidi JR
    Mol Biol Rep, 2019 Feb;46(1):381-390.
    PMID: 30426385 DOI: 10.1007/s11033-018-4482-3
    Lantana camara is an important medicinal plant that contains many active compounds, including pentacyclic triterpenoids, with numerous biological activities. The present study was conducted to evaluate the anti-oxidant, anti-tumour, and cell cycle arrest properties of chemical compounds extracted from L. camara leaves. Four compounds were identified after subjecting the plant methanolic extract to LC-MS/MS analysis: lantadene A, lantadene B, icterogenin, and lantadene C. Potential antioxidant activity was examined using 2, 2-diphenyl-1-picrylhydrazyl and compared with vitamin C as a control. Lantadene A and B were confirmed to possess the highest scavenging activity, while icterogenin and lantadene C exhibited a lesser antioxidant effect. All extracted compounds exerted a dose-dependent reduction in MCF-7 cell viability; however, lantadene B showed the highest anti-cancer activity, with an IC50 of 112.2 μg mL-1, and was therefore used in subsequent experiments. The results also confirmed the significant release of caspase 9 in a dose-dependent pattern following treatment of MCF-7 cells with a range of lantadene B concentrations. Lantadene B was found to induce MCF-7 cell cycle arrest in G1, blocking the G1/S transition with a maximum significant (p ≤ 0.01) cell count of 80.35% at 25 µg mL-1. No significant changes were observed in S phase, but a decrease in the MCF-7 population was exhibited in G2/M phase.
    Matched MeSH terms: Lantana/metabolism*; Lantana/physiology
  7. Pour BM, Sasidharan S
    Asian Pac J Trop Biomed, 2011 Jun;1(3):230-2.
    PMID: 23569765 DOI: 10.1016/S2221-1691(11)60033-6
    To investigate the toxicity of methanol extract of various parts (Root, Stem, Leaf, Flower and Fruit) of Lantana camara (L. Camara) in Artemia salina.
    Matched MeSH terms: Lantana/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links