Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Larva/drug effects
  2. Shinn AP, Mühlhölzl AP, Coates CJ, Metochis C, Freeman MA
    J Invertebr Pathol, 2015 Feb;125:81-6.
    PMID: 25499897 DOI: 10.1016/j.jip.2014.12.002
    An outbreak of the sessile peritrich Zoothamnium duplicatum in a pilot, commercial-scale Limulus polyphemus hatchery resulted in the loss of ∼96% (40,000) second/third instar larvae over a 61day period. peritrich growth was heavy, leading to mechanical obstruction of the gills and physical damage. The peritrichs were controlled without resultant loss of juvenile crabs by administering 10ppm chlorine in freshwater for 1h and the addition of aquarium grade sand; a medium into which the crabs could burrow and facilitate cleaning of the carapace. Peritrich identity was confirmed from a partial SSU rDNA contiguous sequence of 1343bp (99.7% similarity to Z. duplicatum).
    Matched MeSH terms: Larva/drug effects
  3. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Larva/drug effects
  4. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):195-206.
    PMID: 16883288 MyJurnal
    Larvae of Aedes aegypti and Aedes albopictus obtained from 6 consecutive ovitrap surveillance (OS) in Taman Samudera and Kg. Banjar were evaluated for their susceptibility to temephos. Larval bioassays were carried out in accordance with WHO standard methods, with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos respectively. Aedes aegypti and Ae. albopictus obtained from six OS in Taman Samudera showed resistance to diagnostic dosage of temephos with percentage mortality between 5.3 to 72.0 and 9.3 to 56.0, respectively, while Ae. aegypti and Ae. albopictus obtained from Kg. Banjar showed resistance to temephos with percentage mortality between 16.0 to 72.0 and 0 to 50.6, respectively. Only two strains of Ae. aegypti from Kg. Banjar were susceptible to temephos with 93.3% (OS 2) and 100% (OS 3) mortality. The 50% mortality at lethal time (LT50) for all strains of Ae. aegypti and Ae. albopictus tested against operational dosage of temephos showed range between 36.07 to 75.69 minutes and 58.65 to 112.50 minutes, respectively, and complete mortality was achieved after 24 hours. Our results indicated that there is weekly variations of the resistance status for Ae. aegypti and Ae. albopictus. Aedes susceptibility to temephos is changing from time to time in these two study sites. It is essential to continue monitoring the resistance of this vector to insecticides in order to ensure the efficiency of program aimed at vector control and protection of human health.
    Matched MeSH terms: Larva/drug effects
  5. Dieng H, Rajasaygar S, Ahmad AH, Ahmad H, Rawi CS, Zuharah WF, et al.
    Acta Trop, 2013 Dec;128(3):584-90.
    PMID: 23999373 DOI: 10.1016/j.actatropica.2013.08.013
    Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.
    Matched MeSH terms: Larva/drug effects
  6. Shuhaimi-Othman M, Yakub N, Umirah NS, Abas A
    Toxicol Ind Health, 2011 Nov;27(10):879-86.
    PMID: 21402654 DOI: 10.1177/0748233711399318
    Fourth instars larvae of freshwater midge Chironomus javanus (Diptera, Chironomidae) were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al) and manganese (Mn) concentrations. Mortality was assessed and median lethal concentrations (LC(50)) were calculated. LC(50) increased with the decrease in mean exposure times, for all metals. LC(50)s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al and Mn were 0.17, 0.06, 5.57, 0.72, 5.32, 0.62, 1.43 and 5.27 mg/L, respectively. Metals bioconcentration in C. javanus increases with exposure to increasing concentrations and Cd was the most toxic to C. javanus, followed by Cu, Fe, Pb, Al, Mn, Zn and Ni (Cd > Cu > Fe > Pb > Al > Mn > Zn > Ni). Comparison of LC(50) values for metals for this species with those for other freshwater midges reveals that C. javanus is equally or more sensitive to metals than most other tested dipteran.
    Matched MeSH terms: Larva/drug effects*
  7. Ebau W, Rawi CS, Din Z, Al-Shami SA
    Asian Pac J Trop Biomed, 2012 Aug;2(8):631-4.
    PMID: 23569984 DOI: 10.1016/S2221-1691(12)60110-5
    To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer.
    Matched MeSH terms: Larva/drug effects
  8. Marimuthu K, Muthu N, Xavier R, Arockiaraj J, Rahman MA, Subramaniam S
    PLoS One, 2013;8(10):e75545.
    PMID: 24098390 DOI: 10.1371/journal.pone.0075545
    Buprofezin is an insect growth regulator and widely used insecticide in Malaysia. The present study evaluated the toxic effects of buprofezin on the embryo and larvae of African catfish (Clarias gariepinus) as a model organism. The embryos and larvae were exposed to 7 different concentrations (0, 0.05, 0.5, 5, 25, 50 and 100 mg/L) of buprofezin. Each concentration was assessed in five replicates. Eggs were artificially fertilized and 200 eggs and larvae were subjected to a static bath treatment for all the concentrations. The mortality of embryos was significantly increased with increasing buprofezin concentrations from 5 to 100 mg/L (p< 0.05). However, the mortality was not significantly different (p<0.05) among the following concentrations: 0 (control), 0.05, 0.5 and 5 mg/L. Data obtained from the buprofezin acute toxicity tests were evaluated using probit analysis. The 24 h LC50 value (with 95% confidence limits) of buprofezin for embryos was estimated to be 6.725 (3.167-15.017) mg/L. The hatching of fish embryos was recorded as 68.8, 68.9, 66.9, 66.4, 26.9, 25.1 and 0.12% in response to 7 different concentrations of buprofezin, respectively. The mortality rate of larvae significantly (p<0.05) increased with increasing buprofezin concentrations exposed to 24-48 h. The 24 and 48 h LC50 values (with 95% confidence limits) of buprofezin for the larvae was estimated to be 5.702 (3.198-8.898) and 4.642 (3.264-6.287) mg/L respectively. There were no significant differences (p>0.05) in the LC50 values obtained at 24 and 48 h exposure times. Malformations were observed when the embryos and larvae exposed to more than 5 mg/L. The results emerged from the study suggest that even the low concentration (5 mg/L) of buprofezin in the aquatic environment may have adverse effect on the early embryonic and larval development of African catfish.
    Matched MeSH terms: Larva/drug effects
  9. Abu Hasan Z', Williams H, Ismail NM, Othman H, Cozier GE, Acharya KR, et al.
    Sci Rep, 2017 03 27;7:45409.
    PMID: 28345667 DOI: 10.1038/srep45409
    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.
    Matched MeSH terms: Larva/drug effects*
  10. Kassim NF, Webb CE, Russell RC
    J Am Mosq Control Assoc, 2012 Dec;28(4):312-6.
    PMID: 23393755
    Culex molestus is an obligatory autogenous mosquito that is closely associated with subterranean habitats in urban areas. The objective of our study was to investigate the influence of larval and adult nutrition on the role of males in determining the expression of autogeny in Cx. molestus. Mosquitoes raised at low and high larval diets had sex ratio, wing length, mating rates, autogenous egg raft size, and hatching rates recorded. There was a higher ratio of males to females when raised at a low larval diet. Mean wing lengths of both males and females were significantly greater when raised at the high larval diet regime. Regardless of larval or adult diet, males mated with only a single female. Mosquitoes raised at the higher larval diet regimes developed significantly more autogenous eggs. However, the egg raft size was reduced when adult females were denied access to sugar. The results of this study indicate that the performance of males in the reproductive process is influenced by both larval diet and adult sugar feeding.
    Matched MeSH terms: Larva/drug effects
  11. Ali S, Li Y, Haq IU, Abbas W, Shabbir MZ, Khan MM, et al.
    PLoS One, 2021;16(12):e0260470.
    PMID: 34852006 DOI: 10.1371/journal.pone.0260470
    Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.
    Matched MeSH terms: Larva/drug effects*
  12. Chen CD, Nazni WA, Lee HL, Norma-Rashid Y, Lardizabal ML, Sofian-Azirun M
    Trop Biomed, 2013 Jun;30(2):220-30.
    PMID: 23959487 MyJurnal
    Larvae of Aedes albopictus obtained from dengue endemic areas in Selangor, Malaysia were evaluated for their susceptibility to operational dosage of temephos (1 mg/L). Larval bioassays were carried out in accordance to modified WHO standard methods. Biochemical microassay of enzymes in Ae. albopictus was conducted to detect the emergence of insecticide resistance and to define the mechanisms involved in temephos resistance. The 50% mortality lethal time (LT50) for Ae. albopictus tested against temephos ranged between 58.65 to 112.50 minutes, with resistance ratio ranging from 0.75 - 1.45. This study addressed the fluctuation of time-related susceptibility status of Ae. albopictus towards insecticide. Significant difference on the weekly enzyme levels of non-specific esterases, mixed function oxidases and glutathione S-transferases was detected (p ≤ 0.05). No significant correlation was found between temephos resistance and enzyme activity (p > 0.05). Only glutathione S-transferases displayed high level of activity, indicating that Ae. albopictus may be resistant to other groups of insecticide. The insensitive acetylcholinesterase was detected in some field collected Ae. albopictus populations, indicating the possibility of emergence of carbamate or other organophosphate resistance in the field populations. Continuous resistance monitoring should be conducted regularly to confirm the efficacy of insecticides for dengue control.
    Matched MeSH terms: Larva/drug effects
  13. Loke SR, Andy-Tan WA, Benjamin S, Lee HL, Sofian-Azirun M
    Trop Biomed, 2010 Dec;27(3):493-503.
    PMID: 21399591 MyJurnal
    The susceptibility status of field-collected Aedes aegypti (L.) from a dengue endemic area to Bacillus thuringiensis israelensis (Bti) and temephos was determined. Since August 2007, biweekly ovitrap surveillance (OS) was conducted for 12 mo in 2 sites, A & B, in Shah Alam, Selangor. Site A was treated with a Bti formulation, VectoBac® WG at 500 g/ha, from December 2007 - June 2008 while Site B was subjected to routine dengue vector control activities conducted by the local municipality. Aedes aegypti larvae collected from OS in both sites were bred until F3 and evaluated for their susceptibility. The larvae were pooled according to 3 time periods, which corresponded to Bti treatment phases in site A: August - November 2007 (Bti pre-treatment phase); December 2007 - June 2008 (Bti treatment phase); and July - September 2008 (Bti post-treatment phase). Larvae were bioassayed against Bti or temephos in accordance with WHO standard methods. Larvae collected from Site A was resistant to temephos, while incipient temephos resistant was detected in Site B throughout the study using WHO diagnostic dosage of 0.02 mg/L. The LC50 of temephos ranged between 0.007040 - 0.03799 mg/L throughout the year in both sites. Resistance ratios (LC50) indicated that temephos resistance increased with time, from 1.2 - 6.7 folds. The LC50 of Ae. aegypti larvae to Bti ranged between 0.08890 - 0.1814 mg/L throughout the year in both sites, showing uniform susceptibility of field larvae to Bti, in spite of Site A receiving 18 Bti treatments over a period of 7 mo. No cross-resistance of Ae. aegypti larvae from temephos to Bti was detected.
    Matched MeSH terms: Larva/drug effects
  14. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):207-16.
    PMID: 16883289 MyJurnal
    Larvae obtained from Taman Samudera (Gombak, Selangor), Kampung Banjar (Gombak, Selangor), Taman Lembah Maju (Cheras, Kuala Lumpur) and Kampung Baru (City centre, Kuala Lumpur) were bioassayed with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos. All strains of Aedes aegypti and Aedes albopictus showed percentage mortality in the range of 16.00 to 59.05 and 6.4 to 59.50 respectively, after 24 hours. LT50 values for the 6 strains of Ae. aegypti and Ae. albopictus were between 41.25 to 54.42 minutes and 52.67 to 141.76 minutes respectively, and the resistance ratio for both Aedes species were in the range of 0.68 to 1.82 when tested with operational dosage, 1 mg/L temephos. These results indicate that Aedes mosquitoes have developed some degree of resistance. However, complete mortality for all strains were achieved after 24 hours when tested against 1 mg/L temephos.
    Matched MeSH terms: Larva/drug effects
  15. Mohd Masri S, Nazni WA, Lee HL, T Rogayah TA, Subramaniam S
    Trop Biomed, 2005 Dec;22(2):185-9.
    PMID: 16883286 MyJurnal
    Three new techniques of sterilising maggots of Lucilia cuprina for the purpose of debriding intractable wounds were studied. These techniques were utilisation of ultra-violet C (UVC) and maggot sterilisation with disinfectants. The status of sterility was checked on nutrient agar and blood agar and confirmed with staining. The indicators for the effectiveness of the methods were sterility and survival rate of the eggs or larvae. Egg sterilisation with UVC had the lowest hatching rate (16+/-0.00%) while egg sterilisation with disinfectants showed high hatching rate (36.67+/-4.41%) but low maggot survival rate (31.67+/-1.67%). Sterilisation of the maggots was the most suitable, since the survival rate was the highest (88.67+/-0.88%). Complete sterility was achieved in all cases, except that Proteus mirabilis was consistently found. However, the presence of this microorganism was considered beneficial.
    Matched MeSH terms: Larva/drug effects
  16. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    J Med Entomol, 2022 01 12;59(1):301-307.
    PMID: 34459477 DOI: 10.1093/jme/tjab146
    The efficacy of three groups of insect growth regulators, namely juvenile hormone mimics (methoprene and pyriproxyfen), chitin synthesis inhibitors (diflubenzuron and novaluron), and molting disruptor (cyromazine) was evaluated for the first time, against Aedes albopictus Skuse (Diptera: Culicidae) larvae from 14 districts in Sabah, Malaysia. The results showed that all field populations of Ae. albopictus were susceptible towards methoprene, pyriproxyfen, diflubenzuron, novaluron, and cyromazine, with resistance ratio values ranging from 0.50-0.90, 0.60-1.00, 0.67-1.17, 0.71-1.29, and 0.74-1.07, respectively. Overall, the efficacy assessment of insect growth regulators in this study showed promising outcomes and they could be further explored as an alternative to conventional insecticides.
    Matched MeSH terms: Larva/drug effects
  17. Owen-Smith P, Perry R, Wise J, Jamil RZR, Gut L, Sundin G, et al.
    Pest Manag Sci, 2019 Nov;75(11):3050-3059.
    PMID: 30895726 DOI: 10.1002/ps.5421
    BACKGROUND: Air blast sprayers are not optimized for spraying the short statured trees in modern apple orchards, resulting in off target drift and variable coverage. A solid set canopy delivery system (SSCDS) consisting of a microsprayer array distributed throughout the orchard was investigated as a replacement agrochemical application method in this study. SSCDS's have the potential to optimize coverage, rapidly spray applications, and remove the operator and tractor from the orchard.

    RESULTS: Air blast and SSCDS applications were compared using water sensitive paper, bioassays, and pest damage assessments. Pest management and coverage were compared using application volumes of 700 and 795 L ha-1 , respectively. In 2013, adaxial coverage measurements showed no difference between the treatments, but air blast sprayers had higher coverage levels on the abaxial surfaces. There were no significant differences in coverage in 2014. Bioassays using Choristoneura rosaceana fed on leaf discs treated by the SSCDS displayed 95.8% mortality in 2013 and 94.2% mortality in 2014, and air blast treated larval mortality was 95% in 2013 and 100% in 2014. Damage evaluations in both years generally showed no significant differences between the air blast plots and the SSCDS plots, but significant differences between the treated plots and untreated control.

    CONCLUSIONS: The prototype SSCDS was an effective pest management tool in high density apples, and offered a number of advantages over an air blast. Further engineering and research into coverage optimization would offer producers a novel tool for foliar agrochemical applications. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Larva/drug effects
  18. Al-Rofaai A, Rahman WA, Abdulghani M
    Parasitol Res, 2013 Feb;112(2):893-8.
    PMID: 22961237 DOI: 10.1007/s00436-012-3113-5
    The sensitivity of larval paralysis assay (LPA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) assay was compared to evaluate the anthelmintic activity of plant extracts. In this study, the methanolic extract of Azadirachta indica (neem) was evaluated for its activity against the infective-stage larvae (L(3)) of susceptible and resistant Haemonchus contortus strains using the two aforementioned assays. In both in vitro assays, the same serial concentrations of the extract were used, and the median lethal concentrations were determined to compare the sensitivity of both assays. The results revealed a significant difference (P < 0.05) in the sensitivity of the LPA and the MTT-formazan assay. The MTT-formazan assay is more feasible for practical applications because it measured the L(3) mortality more accurately than LPA. This study may help find a suitable assay for investigating the anthelmintic activity of plant extracts against trichostrongylid nematodes.
    Matched MeSH terms: Larva/drug effects
  19. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al.
    Parasitol Res, 2015 Nov;114(11):4087-97.
    PMID: 26227141 DOI: 10.1007/s00436-015-4638-1
    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.
    Matched MeSH terms: Larva/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links