Displaying all 6 publications

Abstract:
Sort:
  1. Toh PY, Ng BW, Ahmad AL, Chieh DC, Lim J
    Nanoscale, 2014 Nov 7;6(21):12838-48.
    PMID: 25227473 DOI: 10.1039/c4nr03121k
    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
    Matched MeSH terms: Lewis Acids
  2. Liu L, Han ZB, Wang SM, Yuan DQ, Ng SW
    Inorg Chem, 2015 Apr 20;54(8):3719-21.
    PMID: 25849722 DOI: 10.1021/acs.inorgchem.5b00185
    Herein, two stable lead(II) molecular-bowl-based metal-organic frameworks and their micro- and nanosized forms with open metal sites were presented. These materials could act as Lewis acid catalysts to cyanosilylation reaction. Moreover, the catalytic performances are size-dependent, with the catalyst with nanosized form being 1 order of magnitude more efficient than those with micro- and millisized forms.
    Matched MeSH terms: Lewis Acids
  3. Kakani V, Kim H, Basivi PK, Pasupuleti VR
    Polymers (Basel), 2020 Jul 23;12(8).
    PMID: 32717780 DOI: 10.3390/polym12081631
    The Inverse Gas Chromatography (IGC) technique has been employed for the surface thermo-dynamic characterization of the polymer Poly(vinylidene chloride-co-acrylonitrile) (P(VDC-co-AN)) in its pure form. IGC attributes, such as London dispersive surface energy, Gibbs free energy, and Guttman Lewis acid-base parameters were analyzed for the polymer (P(VDC-co-AN)). The London dispersive surface free energy ( γ S L ) was calculated using the Schultz and Dorris-Gray method. The maximum surface energy value of (P(VDC-co-AN )) is found to be 29.93 mJ·m - 2 and 24.15 mJ·m - 2 in both methods respectively. In our analysis, it is observed that the γ S L values decline linearly with an increase in temperature. The Guttman-Lewis acid-base parameter K a , K b values were estimated to be 0.13 and 0.49. Additionally, the surface character S value and the correlation coefficient were estimated to be 3.77 and 0.98 respectively. After the thermo-dynamic surface characterization, the (P(VDC-co-AN)) polymer overall surface character is found to be basic. The substantial results revealed that the (P(VDC-co-AN)) polymer surface contains more basic sites than acidic sites and, hence, can closely associate in acidic media. Additionally, visual traits of the polymer (P(VDC-co-AN)) were investigated by employing Computer Vision and Image Processing (CVIP) techniques on Scanning Electron Microscopy (SEM) images captured at resolutions ×50, ×200 and ×500. Several visual traits, such as intricate patterns, surface morphology, texture/roughness, particle area distribution ( D A ), directionality ( D P ), mean average particle area ( μ a v g ) and mean average particle standard deviation ( σ a v g ), were investigated on the polymer's purest form. This collective study facilitates the researches to explore the pure form of the polymer Poly(vinylidene chloride-co-acrylonitrile) (P(VDC-co-AN )) in both chemical and visual perspective.
    Matched MeSH terms: Lewis Acids
  4. Gajjala RR, Chinta RR, Gopireddy VSR, Poola S, Balam SK, Chintha V, et al.
    Bioorg Chem, 2022 Dec;129:106205.
    PMID: 36265354 DOI: 10.1016/j.bioorg.2022.106205
    Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.
    Matched MeSH terms: Lewis Acids
  5. Choo MY, Oi LE, Daou TJ, Ling TC, Lin YC, Centi G, et al.
    Materials (Basel), 2020 Jul 11;13(14).
    PMID: 32664579 DOI: 10.3390/ma13143104
    Nickel-based catalysts play an important role in the hydrogen-free deoxygenation for the production of biofuel. The yield and quality of the biofuel are critically affected by the physicochemical properties of NiO supported on nanosized zeolite Y (Y65, crystal size of 65 nm). Therefore, 10 wt% NiO supported on Y65 synthesized by using impregnation (IM) and deposition-precipitation (DP) methods were investigated. It was found that preparation methods have a significant effect on the deoxygenation of triolein. The initial rate of the DP method (14.8 goil·h-1) was 1.5 times higher than that of the IM method (9.6 goil·h-1). The DP-Y65 showed the best deoxygenation performance with a 80.0% conversion and a diesel selectivity of 93.7% at 380 °C within 1 h. The outstanding performance from the DP method was due to the smaller NiO particle size (3.57 ± 0.40 nm), high accessibility (H.F value of 0.084), and a higher Brönsted to Lewis acidity (B/L) ratio (0.29), which has improved the accessibility and deoxygenation ability of the catalyst. The NH4+ released from the decomposition of the urea during the DP process increased the B/L ratio of zeolite NaY. As a result, the pretreatment to convert Na-zeolite to H-zeolite in a conventional zeolite synthesis can be avoided. In this regard, the DP method offers a one-pot synthesis to produce smaller NiO-supported nanosized zeolite NaY with a high B/L ratio, and it managed to produce a higher yield with selectivity towards green diesel via deoxygenation under a hydrogen-free condition.
    Matched MeSH terms: Lewis Acids
  6. Akinpelu AA, Chowdhury ZZ, Shibly SM, Faisal ANM, Badruddin IA, Rahman MM, et al.
    Int J Mol Sci, 2021 Feb 19;22(4).
    PMID: 33669883 DOI: 10.3390/ijms22042090
    This study deals with the preparation of activated carbon (CDSP) from date seed powder (DSP) by chemical activation to eliminate polyaromatic hydrocarbon-PAHs (naphthalene-C10H8) from synthetic wastewater. The chemical activation process was carried out using a weak Lewis acid of zinc acetate dihydrate salt (Zn(CH3CO2)2·2H2O). The equilibrium isotherm and kinetics analysis was carried out using DSP and CDSP samples, and their performances were compared for the removal of a volatile organic compound-naphthalene (C10H8)-from synthetic aqueous effluents or wastewater. The equilibrium isotherm data was analyzed using the linear regression model of the Langmuir, Freundlich and Temkin equations. The R2 values for the Langmuir isotherm were 0.93 and 0.99 for naphthalene (C10H8) adsorption using DSP and CDSP, respectively. CDSP showed a higher equilibrium sorption capacity (qe) of 379.64 µg/g. DSP had an equilibrium sorption capacity of 369.06 µg/g for C10H8. The rate of reaction was estimated for C10H8 adsorption using a pseudo-first order, pseudo-second order and Elovich kinetic equation. The reaction mechanism for both the sorbents (CDSP and DSP) was studied using the intraparticle diffusion model. The equilibrium data was well-fitted with the pseudo-second order kinetics model showing the chemisorption nature of the equilibrium system. CDSP showed a higher sorption performance than DSP due to its higher BET surface area and carbon content. Physiochemical characterizations of the DSP and CDSP samples were carried out using the BET surface area analysis, Fourier-scanning microscopic analysis (FSEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform spectroscopic analysis (FTIR). A thermogravimetric and ultimate analysis was also carried out to determine the carbon content in both the sorbents (DSP and CDSP) here. This study confirms the potential of DSP and CDSP to remove C10H8 from lab-scale synthetic wastewater.
    Matched MeSH terms: Lewis Acids
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links