Displaying publications 1 - 20 of 256 in total

Abstract:
Sort:
  1. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
    Matched MeSH terms: Ligands
  2. Ab Ghani NS, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2019 07 02;47(W1):W350-W356.
    PMID: 31106379 DOI: 10.1093/nar/gkz391
    A common drug repositioning strategy is the re-application of an existing drug to address alternative targets. A crucial aspect to enable such repurposing is that the drug's binding site on the original target is similar to that on the alternative target. Based on the assumption that proteins with similar binding sites may bind to similar drugs, the 3D substructure similarity data can be used to identify similar sites in other proteins that are not known targets. The Drug ReposER (DRug REPOSitioning Exploration Resource) web server is designed to identify potential targets for drug repurposing based on sub-structural similarity to the binding interfaces of known drug binding sites. The application has pre-computed amino acid arrangements from protein structures in the Protein Data Bank that are similar to the 3D arrangements of known drug binding sites thus allowing users to explore them as alternative targets. Users can annotate new structures for sites that are similarly arranged to the residues found in known drug binding interfaces. The search results are presented as mappings of matched sidechain superpositions. The results of the searches can be visualized using an integrated NGL viewer. The Drug ReposER server has no access restrictions and is available at http://mfrlab.org/drugreposer/.
    Matched MeSH terms: Ligands
  3. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
    Matched MeSH terms: Ligands
  4. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Shah SAA, Raza H, et al.
    PeerJ, 2018;6:e4962.
    PMID: 29967717 DOI: 10.7717/peerj.4962
    The present study comprises the synthesis of a new series of sulfonamides derived from 4-methoxyphenethylamine (1). The synthesis was initiated by the reaction of 1 with 4-methylbenzenesulfonyl chloride (2) in aqueous sodium carbonate solution at pH 9 to yield N-(4-methoxyphenethyl)-4-methylbenzensulfonamide (3).This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides, (4a-j), using N,N-dimethylformamide (DMF) as solvent and LiH as activator to produce a series of new N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfonamides (5a-j). The structural characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. The elemental analysis data was also coherent with spectral data of these molecules. The inhibitory effects on acetylcholinesterase and DPPH were evaluated and it was observed that N-(4-Methoxyphenethyl)-4-methyl-N-(2-propyl)benzensulfonamide (5c) showed acetylcholinesterase inhibitory activity 0.075 ± 0.001 (IC50 0.075 ± 0.001 µM) comparable to Neostigmine methylsulfate (IC50 2.038 ± 0.039 µM).The docking studies of synthesized ligands 5a-j were also carried out against acetylcholinesterase (PDBID 4PQE) to compare the binding affinities with IC50 values. The kinetic mechanism analyzed by Lineweaver-Burk plots demonstrated that compound (5c) inhibits the acetylcholinesterase competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (5c) is 2.5 µM. It was also found from kinetic analysis that derivative 5c irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound 5c may serve as lead structure for the design of more potent acetylcholinesterase inhibitors.
    Matched MeSH terms: Ligands
  5. Abdo A, Salim N, Ahmed A
    J Biomol Screen, 2011 Oct;16(9):1081-8.
    PMID: 21862688 DOI: 10.1177/1087057111416658
    Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.
    Matched MeSH terms: Ligands
  6. Abdo A, Saeed F, Hamza H, Ahmed A, Salim N
    J Comput Aided Mol Des, 2012 Mar;26(3):279-87.
    PMID: 22249773 DOI: 10.1007/s10822-012-9543-4
    Query expansion is the process of reformulating an original query to improve retrieval performance in information retrieval systems. Relevance feedback is one of the most useful query modification techniques in information retrieval systems. In this paper, we introduce query expansion into ligand-based virtual screening (LBVS) using the relevance feedback technique. In this approach, a few high-ranking molecules of unknown activity are filtered from the outputs of a Bayesian inference network based on a single ligand molecule to form a set of ligand molecules. This set of ligand molecules is used to form a new ligand molecule. Simulated virtual screening experiments with the MDL Drug Data Report and maximum unbiased validation data sets show that the use of ligand expansion provides a very simple way of improving the LBVS, especially when the active molecules being sought have a high degree of structural heterogeneity. However, the effectiveness of the ligand expansion is slightly less when structurally-homogeneous sets of actives are being sought.
    Matched MeSH terms: Ligands
  7. Abdo A, Salim N
    J Chem Inf Model, 2011 Jan 24;51(1):25-32.
    PMID: 21155550 DOI: 10.1021/ci100232h
    Many of the conventional similarity methods assume that molecular fragments that do not relate to biological activity carry the same weight as the important ones. One possible approach to this problem is to use the Bayesian inference network (BIN), which models molecules and reference structures as probabilistic inference networks. The relationships between molecules and reference structures in the Bayesian network are encoded using a set of conditional probability distributions, which can be estimated by the fragment weighting function, a function of the frequencies of the fragments in the molecule or the reference structure as well as throughout the collection. The weighting function combines one or more fragment weighting schemes. In this paper, we have investigated five different weighting functions and present a new fragment weighting scheme. Later on, these functions were modified to combine the new weighting scheme. Simulated virtual screening experiments with the MDL Drug Data Report (23) and maximum unbiased validation data sets show that the use of new weighting scheme can provide significantly more effective screening when compared with the use of current weighting schemes.
    Matched MeSH terms: Ligands
  8. Abdo A, Chen B, Mueller C, Salim N, Willett P
    J Chem Inf Model, 2010 Jun 28;50(6):1012-20.
    PMID: 20504032 DOI: 10.1021/ci100090p
    A Bayesian inference network (BIN) provides an interesting alternative to existing tools for similarity-based virtual screening. The BIN is particularly effective when the active molecules being sought have a high degree of structural homogeneity but has been found to perform less well with structurally heterogeneous sets of actives. In this paper, we introduce an alternative network model, called a Bayesian belief network (BBN), that seeks to overcome this limitation of the BIN approach. Simulated virtual screening experiments with the MDDR, WOMBAT and MUV data sets show that the BIN and BBN methods allow effective screening searches to be carried out. However, the results obtained are not obviously superior to those obtained using a much simpler approach that is based on the use of the Tanimoto coefficient and of the square roots of fragment occurrence frequencies.
    Matched MeSH terms: Ligands
  9. Abdusalam AAA, Murugaiyah V
    Front Mol Biosci, 2020;7:603037.
    PMID: 33392261 DOI: 10.3389/fmolb.2020.603037
    The rapid outbreak of Coronavirus Disease 2019 (COVID-19) that was first identified in Wuhan, China is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 3CL protease (3CLpro) is the main protease of the SARS-CoV-2, which is responsible for the viral replication and therefore considered as an attractive drug target since to date there is no specific and effective vaccine available against this virus. In this paper, we reported molecular docking-based virtual screening (VS) of 2000 compounds obtained from the ZINC database and 10 FDA-approved (antiviral and anti-malaria) on 3CLpro using AutoDock Vina to find potential inhibitors. The screening results showed that the top four compounds, namely ZINC32960814, ZINC12006217, ZINC03231196, and ZINC33173588 exhibited high affinity at the 3CLpro binding pocket. Their free energy of binding (FEB) were -12.3, -11.9, -11.7, and -11.2 kcal/mol while AutoDock Vina scores were -12.61, -12.32, -12.01, and -11.92 kcal/mol, respectively. These results were better than the co-crystallized ligand N3, whereby its FEB was -7.5 kcal/mol and FDA-approved drugs. Different but stable interactions were obtained between the four identified compounds with the catalytic dyad residues of the 3CLpro. In conclusion, novel 3CLpro inhibitors from the ZINC database were successfully identified using VS and molecular docking approach, fulfilling the Lipinski rule of five, and having low FEB and functional molecular interactions with the target protein. The findings suggests that the identified compounds may serve as potential leads that act as COVID-19 3CLpro inhibitors, worthy for further evaluation and development.
    Matched MeSH terms: Ligands
  10. Abuelizz HA, Iwana NANI, Ahmad R, Anouar EH, Marzouk M, Al-Salahi R
    BMC Chem, 2019 Dec;13(1):52.
    PMID: 31384800 DOI: 10.1186/s13065-019-0560-4
    Diabetes is an emerging metabolic disorder. α-Glucosidase inhibitors, such as acarbose, delay the hydrolysis of carbohydrates by interfering with the digestive enzymes. This action decreases the glucose absorption and the postprandial glucose level. We have synthesized 25 tricyclic 2-phenoxypyrido[3,2-e][1,2,4]triazolo[1,5-a]pyrimidin-5(4H)-ones hybrids and evaluated their α-glucosidase inhibitory activity. Compounds 6h and 6d have shown stronger activity than that of acarbose. Compound 6h exhibited the highest inhibition with an IC50 of 104.07 µM. Molecular modelling studies revealed that compound 6h inhibits α-glucosidase due to the formation of a stable ligand-α-glucosidase complex and extra hydrogen bond interactions, and directed in the binding site by Trp329.25 tricyclic 2-phenoxypyrido[3,2-e][1,2,4]triazolo[1,5-a]pyrimidin-5(4H)-ones hybrids have been synthesized and evaluated their α-glucosidase inhibitory activity. Compounds 6h have shown stronger activity than that of acarbose.
    Matched MeSH terms: Ligands
  11. Acquah C, Chan YW, Pan S, Yon LS, Ongkudon CM, Guo H, et al.
    Sci Rep, 2019 10 10;9(1):14501.
    PMID: 31601836 DOI: 10.1038/s41598-019-50862-1
    Immobilisation of aptameric ligands on solid stationary supports for effective binding of target molecules requires understanding of the relationship between aptamer-polymer interactions and the conditions governing the mass transfer of the binding process. Herein, key process parameters affecting the molecular anchoring of a thrombin-binding aptamer (TBA) onto polymethacrylate monolith pore surface, and the binding characteristics of the resulting macroporous aptasensor were investigated. Molecular dynamics (MD) simulations of the TBA-thrombin binding indicated enhanced Guanine 4 (G4) structural stability of TBA upon interaction with thrombin in an ionic environment. Fourier-transform infrared spectroscopy and thermogravimetric analyses were used to characterise the available functional groups and thermo-molecular stability of the immobilised polymer generated with Schiff-base activation and immobilisation scheme. The initial degradation temperature of the polymethacrylate stationary support increased with each step of the Schiff-base process: poly(Ethylene glycol Dimethacrylate-co-Glycidyl methacrylate) or poly(EDMA-co-GMA) [196.0 °C (±1.8)]; poly(EDMA-co-GMA)-Ethylenediamine [235.9 °C (±6.1)]; poly(EDMA-co-GMA)-Ethylenediamine-Glutaraldehyde [255.4 °C (±2.7)]; and aptamer-modified monolith [273.7 °C (±2.5)]. These initial temperature increments reflected in the associated endothermic energies were determined with differential scanning calorimetry. The aptameric ligand density obtained after immobilisation was 480 pmol/μL. Increase in pH and ionic concentration affected the surface charge distribution and the binding characteristics of the aptamer-modified disk-monoliths, resulting in the optimum binding pH and ionic concentration of 8.0 and 5 mM Mg2+, respectively. These results are critical in understanding and setting parametric constraints indispensable to develop and enhance the performance of aptasensors.
    Matched MeSH terms: Ligands
  12. Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK
    Crit Rev Food Sci Nutr, 2020;60(7):1195-1206.
    PMID: 30714390 DOI: 10.1080/10408398.2018.1564234
    The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
    Matched MeSH terms: Ligands
  13. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
    Matched MeSH terms: Ligands
  14. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Ligands
  15. Ahmad N, Anouar EH, Tajuddin AM, Ramasamy K, Yamin BM, Bahron H
    PLoS One, 2020;15(4):e0231147.
    PMID: 32287324 DOI: 10.1371/journal.pone.0231147
    This paper reports the synthesis, characterization, anticancer screening and quantum chemical calculation of a tetradentate Schiff base 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis- (azanylylidene))bis(methanylylidene))bis(4-fluorophenol) (L2F) and its Pd (II) complex (PdL2F). The compounds were characterized via UV-Visible, NMR, IR spectroscopy and single crystal x-ray diffraction. Density Functional Theory (DFT) and time-dependent DFT calculations in gas and solvent phases were carried out using B3LYP, B3P86, CAM-B3LYP and PBE0 hybrid functionals combined with LanL2DZ basis set. Complexation of L2F to form PdL2F was observed to cause a bathochromic shift of the maximum absorption bands of n-π* from 327 to 410 nm; an upfield shift for δ (HC = N) from 8.30 to 7.96 ppm and a decreased wavenumber for ν(C = N) from 1637 to 1616 cm-1. Overall, the UV-Vis, NMR and IR spectral data are relatively well reproduced through DFT and TD-DFT methods. L2F and PdL2F showed IC50 of 90.00 and 4.10 μg/mL, respectively, against human colorectal carcinoma (HCT116) cell lines, signifying increased anticancer activity upon complexation with Pd (II).
    Matched MeSH terms: Ligands
  16. Ahmad NA, Mohamed Zulkifli R, Hussin H, Nadri MH
    J Mol Graph Model, 2021 06;105:107872.
    PMID: 33765525 DOI: 10.1016/j.jmgm.2021.107872
    Aptamers are short oligonucleotides that possess high specificity and affinity against their target. Generated via Systematic Evolution of Ligands by Exponential Enrichment, (SELEX) in vitro, they were screened and enriched. This review covering the study utilizing bioinformatics tools to analyze primary sequence, secondary and tertiary structure prediction, as well as docking simulation for various aptamers and their ligand interaction. Literature was pooled from Web of Science (WoS) and Scopus databases until December 18, 2020 using specific search string related to DNA aptamers, in silico, structure prediction, and docking simulation. Out of 330 published articles, 38 articles were assessed in the analysis based on the predefined inclusion and exclusion criteria. It was found that Mfold and RNA Composer web server is the most popular tool in secondary and tertiary structure prediction of DNA aptamers, respectively. Meanwhile, in docking simulation, ZDOCK and AutoDock are preferred to analyze binding interaction in the aptamer-ligand complex. This review reports a brief framework of recent developments of in silico approaches that provide predictive structural information of ssDNA aptamer.
    Matched MeSH terms: Ligands
  17. Ahmad SN, Zaharim WN, Sulaiman S, Hasan Baseri DF, Mohd Rosli NA, Ang LS, et al.
    ACS Omega, 2020 Dec 29;5(51):33253-33261.
    PMID: 33403287 DOI: 10.1021/acsomega.0c04937
    Density functional theory computational investigation was performed to study the electronic structures, muon sites, and the associated hyperfine interactions in [Au25(SR)18]0 and [Au25(SeR)18]0 where R is phenylethane. The calculated electronic structures show inhomogeneous spin density distribution and are also affected by different ligands. The two most stable muon sites near Au atoms in the thiolated system are MAu11 and MAu6. When the thiolate ligands were replaced by selenolate ligands, the lowest energy positions of muons moved to MAu6 and MAu5. Muons prefer to stop inside the Au12 icosahedral shell, away from the central Au and the staple motifs region. Muonium states at phenyl ring and S/Se atoms in the ligand were found to be stable and the Fermi contact fields are much larger as compared to the field experienced by muons near Au atoms.
    Matched MeSH terms: Ligands
  18. Ahmed A, Saeed F, Salim N, Abdo A
    J Cheminform, 2014;6:19.
    PMID: 24883114 DOI: 10.1186/1758-2946-6-19
    BACKGROUND: It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database.

    RESULTS: The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints.

    CONCLUSIONS: Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.

    Matched MeSH terms: Ligands
  19. Ahmed A, Abdo A, Salim N
    ScientificWorldJournal, 2012;2012:410914.
    PMID: 22623895 DOI: 10.1100/2012/410914
    Many of the similarity-based virtual screening approaches assume that molecular fragments that are not related to the biological activity carry the same weight as the important ones. This was the reason that led to the use of Bayesian networks as an alternative to existing tools for similarity-based virtual screening. In our recent work, the retrieval performance of the Bayesian inference network (BIN) was observed to improve significantly when molecular fragments were reweighted using the relevance feedback information. In this paper, a set of active reference structures were used to reweight the fragments in the reference structure. In this approach, higher weights were assigned to those fragments that occur more frequently in the set of active reference structures while others were penalized. Simulated virtual screening experiments with MDL Drug Data Report datasets showed that the proposed approach significantly improved the retrieval effectiveness of ligand-based virtual screening, especially when the active molecules being sought had a high degree of structural heterogeneity.
    Matched MeSH terms: Ligands*
  20. Al-Anazi M, Al-Najjar BO, Khairuddean M
    Molecules, 2018 Dec 05;23(12).
    PMID: 30563058 DOI: 10.3390/molecules23123203
    Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian, and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics simulations. After a careful analysis of docking results, compounds 1a and 1d were chosen for molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation revealed the ability of compounds 1a and 1d to retain the essential interactions needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly within the active site with binding energies of -44.04 and -56.6 kcal/mol for compounds 1a and 1d, respectively. Compound 1d showed to have a close binding energy with TAK-285 (-66.17 kcal/mol), which indicates a high chance for compound 1d to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity. It is anticipated that the findings reported here may provide very useful information for designing effective drugs for the treatment of EGFR-related cancer disease.
    Matched MeSH terms: Ligands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links