Displaying publications 1 - 20 of 335 in total

Abstract:
Sort:
  1. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
    Matched MeSH terms: Light
  2. Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, et al.
    ACS Appl Mater Interfaces, 2019 Jan 09;11(1):1655-1664.
    PMID: 30561192 DOI: 10.1021/acsami.8b17758
    The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
    Matched MeSH terms: Light
  3. Anand K, Abdul NS, Ghazi T, Ramesh M, Gupta G, Tambuwala MM, et al.
    ACS Omega, 2021 Jan 12;6(1):265-277.
    PMID: 33458478 DOI: 10.1021/acsomega.0c04461
    In this study, novel self-assembled carbazole-thiooctanoic acid nanoparticles (CTNs) were synthesized from amino carbazole (a mutagen) and thiooctanoic acid (an antioxidant). The nanoparticles were characterized using hyperspectral techniques. Then, the antiproliferative potential of CTNs was determined in HepG2 liver carcinoma cells. This study employed a solvent-antisolvent interaction method to synthesize a spherical CTN of size less than 50 nm. Moreover, CT was subsequently capped to gold nanoparticles (AuNPs) in the additional comparative studies. The CT derivative was synthesized from carbazole and lipoic acid by the amide bond formation reaction using a coupling agent. Furthermore, it was characterized using infrared (IR), 1H nuclear magnetic resonance, dynamic light scattering (DLS), and transmission electron microscopy techniques. The CT-capped gold nanoparticles (CTAuNPs) were prepared from CT, chloroauric acid, and NaBH4. The CTAuNPs were characterized using ultraviolet-visible, high-resolution TEM, DLS, and Fourier transform IR techniques. The cytotoxicity and apoptosis-inducing ability of both nanoparticles were determined in HepG2 cells. The results demonstrate that CTNs exhibit antiproliferative activity in the cancerous HepG2 cells. Moreover, molecular docking and molecular dynamics studies were conducted to explore the therapeutic potential of CT against human EGFR suppressor protein to gain more insights into the binding mode of the CT, which may show a significant role in anticancer therapy.
    Matched MeSH terms: Dynamic Light Scattering
  4. Shaari, S., Ehsan, A.A., Abd-Rahman, M.K.
    ASM Science Journal, 2008;2(2):153-161.
    MyJurnal
    An optical code generating device for a portable optical access-card system was constructed using the plastic optical fibre (POF) waveguide coupler. The newly constructed device provided output light intensities which were used as optical codes in a portable optical access-card system. The construction of a basic 1 × 2 waveguide design combined two major components which were the asymmetric Y-junction splitter and the linear taper. A hollow waveguide structure was utilized as it provided more flexibility in guiding light rays. A basic 1 × 2 waveguide coupler was designed using the CAD tool and then the ray was traced using the non-sequential ray tracing tool. A linear relationship between the tap-off ratio and the waveguide tap-width enabled a higher-level hollow waveguide coupler to be designed using the simple cascading technique. Construction of a 1 × 4 and higher level waveguide coupler was easily realized using the basic 1 × 2 waveguide coupler design together with a simple cascading technique.
    Matched MeSH terms: Light
  5. Mahdi, M.A., Md. Ali, M.I., Ahmad, A., Zamzuri, A.K.
    ASM Science Journal, 2008;2(2):123-127.
    MyJurnal
    In this paper a study on the wideband double-pass Raman fibre amplifier with mirror as the pump reflector is reported. The pump lights at 1435 nm and 1455 nm were launched in a co-directional manner with respect to the input signal. The double-pass direction of the signal was achieved through a fibre loop mirror constructed using an optical circulator. It was shown that multiple signal amplification was achieved without any disturbance of stimulated Brillouin scattering.
    Matched MeSH terms: Light
  6. Yunus, N.A.M., Jaafar, H., Halin, I.A., Green, N.G.
    ASM Science Journal, 2014;8(1):29-35.
    MyJurnal
    This paper presents a suitable and unique system for observing dielectrophoretic particle separation in a microfluidic device. Details presented on the experimental setup used will enable real time examination, monitoring and analysis of carboxylate-modified latex sphere particles in a colloidal mixture. Observations of the particles were made possible through an optical setup that illuminates the particles that went through the microelectrode array in the microchannel that was controlled by two analog signal generators. Through the setup, it was easily observed that the latex sphere particles move at a flow rate of 0.2 μl/s without colliding or overlapping on each other and successfully separated in two bands left and right. The new separation of one finest particles size for finest purification with respect to frequency was also observed, obtained and analysed.
    Matched MeSH terms: Light; Lighting
  7. Ahmad Zaidee Laidin, Loganathan, P.
    ASM Science Journal, 2011;5(1):77-77.
    MyJurnal
    Awareness and sensitivity on the subject of green technology are currently commanding the attention of the world in the light of rising energy costs and the threat of global warming. Many countries are now recognizing the benefits of researching into and using green technology to reduce their carbon and water footprints and to minimize waste. (Copied from article).
    Matched MeSH terms: Light
  8. Salleh, S., McMinn, A., Mohammad, M., Yasin, Z., Tan, S.H.A.
    ASM Science Journal, 2010;4(1):81-88.
    MyJurnal
    Elevated temperature affects marine benthic algae by reducing growth and limits the transport of electron or carbon fixation which may reduce the ability of the cell to use light. This resulting excess light energy may cause photoinhibition. In this study, the photosystem II of the benthic microalgal communities from Casey, eastern Antarctic were relatively unaffected by significant changes in temperatures up to 8ºC, along with high PAR level (450 μmol photons m–2 s–1). Similarly, the community was able to photosynthesize as the temperature was reduced to –5ºC. Recovery from saturating and photoinhibiting irradiances was not significantly influenced by temperatures at both –5ºC and 8ºC. These responses were consistent with those recorded by past experiments on Antarctic benthic diatoms and temperate diatoms which showed that climate change did not have a significant impact on the ability of benthic microalgae to recover from photoinhibitory temperature stress.
    Matched MeSH terms: Light
  9. Masdialily, D., Maznah, W.O.W., Faradina, M., Mashhor, M.
    ASM Science Journal, 2010;4(1):74-80.
    MyJurnal
    In this study the effects of phosphorus and nitrogen levels, temperature and light-dark cycle on the algal growth potential (AGP) of an Antarctic Chlorococcum isolated from an ephemeral stream at Reeve Hill, Antarctica was investigated. The highest AGP was attained when the cultures were grown at high nitrogen concentration (329.87 mg NO3-N/l) and low phosphorus concentration (2.6 mg PO4-P/l) at 4ºC on a 12 h:12 h light-dark cycle. The results showed that Chlorococcum sp. required a high concentration of nitrogen, low concentration of phosphorus, low temperature with equal lengths of light and dark period (12 h:12 h) for optimum growth.
    Matched MeSH terms: Light
  10. Abdul Rahim, R., Pang, J.F., Chan, K.S., Leong, L.C., Fazalul Rahiman, M.H.
    ASM Science Journal, 2007;1(1):27-36.
    MyJurnal
    In this study, real-time imaging was monitored for flowing solid particles when various baffles were created to block certain areas of the pipe. The generated flow regimes were full-flow, three-quarter-flow, half-flow and quarter-flow. A vertical pneumatic conveyor was designed to hold a 85 mm inner diameter pipeline. The four projection optical tomography systems used, applied the parallel beam projection approach and use infrared light sources so that the sensor was free of noise from the surrounding visible light source. The two orthogonal and two rectilinear projections were axial, but ideally they should have been in the same layer. The sensor readings could be related to the varying light intensity effects of the dropping particles and were used to provide cross-sectional distribution information for the conveyor. By using computer programming, the information was reconstructed to produce coloured images and concentration was obtained by reference to a colour code. The results obtained from this study showed how imaged flow followed the artificial flow regime. This study could benefit industrial production lines in maintaining the desired flow rates.
    Matched MeSH terms: Light
  11. Narayanan SN, Kumar RS
    Acta. Biol. Hung., 2018 Dec;69(4):371-384.
    PMID: 30587025 DOI: 10.1556/018.69.2018.4.1
    In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
    Matched MeSH terms: Light*
  12. Yenyuwadee S, Achavanuntakul P, Phisalprapa P, Levin M, Saokaew S, Kanchanasurakit S, et al.
    Acta Derm Venereol, 2024 Jan 08;104:adv18477.
    PMID: 38189223 DOI: 10.2340/actadv.v104.18477
    Utilization of lasers and energy-based devices for surgical scar minimization has been substantially evaluated in placebo-controlled trials. The aim of this study was to compare reported measures of efficacy of lasers and energy-based devices in clinical trials in preventing surgical scar formation in a systematic review and network meta-analyses. Five electronic databases, PubMed, Scopus, Embase, ClinicalTrials.gov, and the Cochrane Library, were searched to retrieve relevant articles. The search was limited to randomized controlled trials that reported on clinical outcomes of surgical scars with treatment initiation no later than 6 months after surgery and a follow-up period of at least 3 months. A total of 18 randomized controlled trials involving 482 participants and 671 postsurgical wounds were included in the network meta-analyses. The results showed that the most efficacious treatments were achieved using low-level laser therapy) (weighted mean difference -3.78; 95% confidence interval (95% CI) -6.32, -1.24) and pulsed dye laser (weighted mean difference -2.46; 95% CI -4.53, -0.38). Nevertheless, low-level laser therapy and pulsed dye laser demonstrated comparable outcomes in surgical scar minimization (weighted mean difference -1.32, 95% CI -3.53, 0.89). The findings of this network meta-analyses suggest that low-level laser therapy and pulsed dye laser are both effective treatments for minimization of scar formation following primary closure of surgical wounds with comparable treatment outcomes.
    Matched MeSH terms: Low-Level Light Therapy*
  13. Qamruddin I, Alam MK, Fida M, Khan AG
    Am J Orthod Dentofacial Orthop, 2016 Jan;149(1):62-6.
    PMID: 26718379 DOI: 10.1016/j.ajodo.2015.06.024
    The aim of this study was to see the effect of a single dose of low-level laser therapy on spontaneous and chewing pain after the placement of elastomeric separators.
    Matched MeSH terms: Low-Level Light Therapy/methods*
  14. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Am J Orthod Dentofacial Orthop, 2017 Nov;152(5):622-630.
    PMID: 29103440 DOI: 10.1016/j.ajodo.2017.03.023
    INTRODUCTION: The aim of this study was to evaluate the effect of low-level laser irradiation applied at 3-week intervals on orthodontic tooth movement and pain associated with orthodontic tooth movement using self-ligating brackets.

    METHODS: Twenty-two patients (11 male, 11 female; mean age, 19.8 ± 3.1 years) with Angle Class II Division 1 malocclusion were recruited for this split-mouth clinical trial; they required extraction of maxillary first premolars bilaterally. After leveling and alignment with self-ligating brackets (SmartClip SL3; 3M Unitek, St Paul, Minn), a 150-g force was applied to retract the canines bilaterally using 6-mm nickel-titanium closed-coil springs on 0.019 x 0.025-in stainless steel archwires. A gallium-aluminum-arsenic diode laser (iLas; Biolase, Irvine, Calif) with a wavelength of 940 nm in a continuous mode (energy density, 7.5 J/cm2/point; diameter of optical fiber tip, 0.04 cm2) was applied at 5 points buccally and palatally around the canine roots on the experimental side; the other side was designated as the placebo. Laser irradiation was applied at baseline and then repeated after 3 weeks for 2 more consecutive follow-up visits. Questionnaires based on the numeric rating scale were given to the patients to record their pain intensity for 1 week. Impressions were made at each visit before the application of irradiation at baseline and the 3 visits. Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland).

    RESULTS: Canine retraction was significantly greater (1.60 ± 0.38 mm) on the experimental side compared with the placebo side (0.79 ± 0.35 mm) (P <0.05). Pain was significantly less on the experimental side only on the first day after application of LLLI and at the second visit (1.4 ± 0.82 and 1.4 ± 0.64) compared with the placebo sides (2.2 ± 0.41 and 2.4 ± 1.53).

    CONCLUSIONS: Low-level laser irradiation applied at 3-week intervals can accelerate orthodontic tooth movement and reduce the pain associated with it.

    Matched MeSH terms: Low-Level Light Therapy*
  15. Tu Y, Ahmad N, Briscoe J, Zhang DW, Krause S
    Anal Chem, 2018 07 17;90(14):8708-8715.
    PMID: 29932632 DOI: 10.1021/acs.analchem.8b02244
    Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
    Matched MeSH terms: Light
  16. Zhang W, Mohamed AR, Ong WJ
    Angew Chem Int Ed Engl, 2020 Dec 14;59(51):22894-22915.
    PMID: 32009290 DOI: 10.1002/anie.201914925
    Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
    Matched MeSH terms: Light; Sunlight
  17. Radzi, Z., Abu Kasim, N.H., Yahya, N.A., Abu Osman, N.A., Kassim, N.L.
    Ann Dent, 2008;15(1):33-39.
    MyJurnal
    The purpose of this study was to investigate the light intensity of selected light curing units with varying distance and angulation of the light curing tip and lightmeter. Materials and method: Four types of light units; Spectrum 800 (Dentsply), Coltulux 3 (Coltene), Elipar FreeLight 2 (3M Espe) and Starlight Pro (Mectron) were evaluated for light intensity at various distances between the light curing tip and the radiometer Cure Rite Denstply (0,1,3,5,10 and 15 mm). The light curing units were tested at right angles to the aperture of the light meter and at the angles of 45°, 60° to it at a standardized 5 mm distance. Results: The highest light intensity was obtained when the tip of light curing unit was in contact with the lightmeter aperture. The light intensity decreased significantly when the light tip was placed 5mm, 10mm and 15mm away from the lightmeter aperture. However, no significant differences (p> .05) were detected between Omm, Imm and 3mm. There was a decrease in light intensity when light~·tip was angulated at 45° and 60° except for Coltolux 3. Conclusions: The intensity of the curing light was affected by the distance between the light curing tip and the lightmeter. However, the decrease in light intensity of the light curing unit was found not to obey the inverse square law for the distances 0 to 15 mm. The study found that there was no significant difference between 45° and 60° angulation between the light curing tip and the lightmeter. However, the decrease in light intensity was significant when compared to the light tip placed perpendicular (90°) to the aperture of the light meter.
    Matched MeSH terms: Light; Curing Lights, Dental
  18. Osada N, Takeda H
    Ann Bot, 2003 Jan;91(1):55-63.
    PMID: 12495920
    To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.
    Matched MeSH terms: Light
  19. Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH
    Ann Bot, 2017 Mar 01;119(4):517-532.
    PMID: 28065926 DOI: 10.1093/aob/mcw242
    BACKGROUND AND AIMS: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed.

    METHODS: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop.

    KEY RESULTS: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area.

    CONCLUSIONS: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.

    Matched MeSH terms: Light
  20. Lim AS, Ang BC, Heng LK, Hart PM, Ngui MS, Chew P, et al.
    Ann Acad Med Singap, 1989 Mar;18(2):174-7.
    PMID: 2751233
    This is a retrospective study of 525 posterior chamber implants in diabetics performed by A S M Lim and B C Ang of Singapore. The patients were reviewed by visiting ophthalmologists--J E Kennedy (Sydney), M Ngui (East Malaysia) and P M Hart (Belfast). This study did not show any significant difference in the complication of post-operative visual acuity between diabetics and non-diabetics. 95% obtained 6/12 vision or better when pre-existing disease was excluded. It also showed that posterior chamber implants can be inserted in eyes with maculopathy or proliferative retinopathy if laser treatment was effectively done before or after surgery.
    Matched MeSH terms: Light Coagulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links