Displaying publications 1 - 20 of 218 in total

Abstract:
Sort:
  1. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Lignin
  2. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N
    Int J Environ Res Public Health, 2021 Jun 03;18(11).
    PMID: 34204975 DOI: 10.3390/ijerph18116001
    Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
    Matched MeSH terms: Lignin*
  3. Wang M, Han L, Liu S, Zhao X, Yang J, Loh SK, et al.
    Biotechnol J, 2015 Sep;10(9):1424-33.
    PMID: 26121186 DOI: 10.1002/biot.201400723
    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.
    Matched MeSH terms: Lignin/metabolism*; Lignin/chemistry*
  4. Zamzuri NA, Abd-Aziz S, Rahim RA, Phang LY, Alitheen NB, Maeda T
    J Appl Microbiol, 2014 Apr;116(4):903-10.
    PMID: 24314059 DOI: 10.1111/jam.12410
    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method.
    Matched MeSH terms: Lignin/metabolism
  5. Eugene M. Obeng, Chan, Yi Wei, Siti Nurul Nadzirah Adam, Clarence M. Ongkudon
    MyJurnal
    Cellulases have been vital for the saccharification of lignocellulosic biomass into reduced sugars to produce biofuels and other essential biochemicals. However, the sugar yields achievable for canonical cellulases (i.e. endoglucanases, exoglucanases and β-glucosidases) have not been convincing in support of the highly acclaimed prospects and end-uses heralded. The persistent pursuit of the biochemical industry to obtain high quantities of useful chemicals from lignocellulosic biomass has resulted in the supplementation of cellulose-degrading enzymes with other biological complementation. Also, chemical additives (e.g. salts, surfactants and chelating agents) have been employed to enhance the stability and improve the binding and overall functionality of cellulases to increase product titre. Herein, we report the roadmap of cellulase-additive supplementations and the associated yield performances.
    Matched MeSH terms: Lignin
  6. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al.
    Bioresour Technol, 2023 Jan;368:128356.
    PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356
    The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
    Matched MeSH terms: Lignin*
  7. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
    Matched MeSH terms: Lignin
  8. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Mat H
    Carbohydr Polym, 2017 Jun 15;166:291-299.
    PMID: 28385235 DOI: 10.1016/j.carbpol.2017.02.102
    This work reports on a complete isolation and characterization of lignocellulosic compounds from oil palm empty fruit bunch (OPEFB) by ionic liquid (IL) treatment and alkaline treatment processes. The fractionated lignocellulosic compounds were confirmed by FTIR and CP/MAS 13CNMR analyses. The yield of the cellulose, hemicellulose and lignin fractions was 52.72±1.50% wt., 27.17±1.68% wt. and 16.82±1.15% wt. with molecular weight of 1869g/mol, 1736g/mol and 2695g/mol, and degradation temperature of 325.65°C, 236.25°C, and 201.40°C, respectively. The SEM image illustrates the bundle-like fiber of cellulose fraction and smaller particle size of hemicellulose and lignin fractions with inconsistent shape. The XRD patterns depict the crystalline cellulose, amorphous lignin and partially amorphous hemicellulose fractions property. The IL could be recovered and reused with an overall recovery of 48% wt. after the fourth cycle.
    Matched MeSH terms: Lignin/isolation & purification*
  9. Fan YV, Klemeš JJ, Perry S, Lee CT
    J Environ Manage, 2019 Feb 01;231:352-363.
    PMID: 30366314 DOI: 10.1016/j.jenvman.2018.10.020
    Lignocellulosic waste (LW) is abundant in availability and is one of the suitable substrates for anaerobic digestion (AD). However, it is a complex solid substrate matrix that hinders the hydrolysis stage of anaerobic digestion. This study assessed various pre-treatment and post-treatments of lignocellulosic waste for anaerobic digestion benefiting from advanced P-graph and GaBi software (Thinkstep, Germany) from the perspective of cost and environmental performances (global warming potential, human toxicity, ozone depletion potential, particulate matter, photochemical oxidant creation, acidification and eutrophication potential). CaO pre-treatment (P4), H2S removal with membrane separation post-treatment (HSR MS) and without the composting of digestate is identified as the cost-optimal pathway. The biological (P7- Enzyme, P8- Microbial Consortium) and physical (P1- Grinding, P2- Steam Explosion, P3- Water Vapour) pre-treatments alternatives have lower environmental impacts than chemical pre-treatments (P4- CaO, P5- NaOH, P6- H2SO4) however they are not part of the near cost optimal solutions. For post-treatment, the near cost optimal alternatives are H2S removal with organic physical scrubbing (HSR OPS) and H2S removal with amine scrubbing (HSR AS). HSR AS has a better performance in the overall environmental impacts followed by HSR MS and HSR OPS. In general, the suggested cost-optimal solution is still having relatively lower environmental impacts and feasible for implementation (cost effective). There is very complicated to find a universal AD solution. Different scenarios (the type of substrate, the scale, product demand, policies) have different constraints and consequently solutions. The trade-offs between cost and environment performances should be a future extension of this work.
    Matched MeSH terms: Lignin*
  10. Malik Z, Muhammad N, Kaleem M, Nayyar M, Qazi AS, Butt DQ, et al.
    ACS Appl Bio Mater, 2023 Feb 20;6(2):425-435.
    PMID: 36700919 DOI: 10.1021/acsabm.2c00644
    This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.
    Matched MeSH terms: Lignin
  11. Gunny AA, Arbain D, Nashef EM, Jamal P
    Bioresour Technol, 2015 Apr;181:297-302.
    PMID: 25661309 DOI: 10.1016/j.biortech.2015.01.057
    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.
    Matched MeSH terms: Lignin/metabolism*
  12. Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S
    Nanoscale Res Lett, 2020 Nov 04;15(1):207.
    PMID: 33146807 DOI: 10.1186/s11671-020-03438-2
    Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
    Matched MeSH terms: Lignin
  13. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park YC, et al.
    Bioprocess Biosyst Eng, 2012 Nov;35(9):1497-503.
    PMID: 22644062 DOI: 10.1007/s00449-012-0739-8
    Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7 % (w/w) ammonia, 80 °C, 20 h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4 % with cellulase of 60 FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60 FPU/g-glucan. With 3 % glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48 h of the SSF were 7.5 and 9.7 g/L and 43.8 and 56.8 %, respectively. The ethanol productivities found at 12 and 24 h from pretreated fronds were 0.62 and 0.36 g/L/h, respectively.
    Matched MeSH terms: Lignin/chemistry*
  14. Taer E, Yanti N, Padang E, Apriwandi A, Zulkarnain Z, Haryanti NH, et al.
    J Sci Food Agric, 2023 Dec;103(15):7411-7423.
    PMID: 37431642 DOI: 10.1002/jsfa.12846
    BACKGROUND: Porous carbon electrode (PCE) is identified as a highly suitable electrode material for commercial application due to its production process, which is characterized by simplicity, cost-effectiveness and environmental friendliness. PCE was synthesized using torch ginger (Etlingera elatior (Jack) R.M. Smith) leaves as the base material. The leaves were treated with different concentrations of ZnCl2 , resulting in a supercapacitor cell electrode with unique honeycomb-like three-dimensional (3D) morphological pore structure. This PCE comprises nanofibers from lignin content and volatile compounds from aromatic biomass waste.

    RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.

    CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Lignin
  15. Gundupalli MP, Cheenkachorn K, Chuetor S, Kirdponpattara S, Gundupalli SP, Show PL, et al.
    Carbohydr Polym, 2023 Apr 15;306:120599.
    PMID: 36746569 DOI: 10.1016/j.carbpol.2023.120599
    Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.
    Matched MeSH terms: Lignin
  16. Mhd Haniffa MAC, Munawar K, Ching YC, Illias HA, Chuah CH
    Chem Asian J, 2021 Jun 01;16(11):1281-1297.
    PMID: 33871151 DOI: 10.1002/asia.202100226
    New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.
    Matched MeSH terms: Lignin/chemistry
  17. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
    Matched MeSH terms: Lignin/chemistry*
  18. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK
    Bioresour Technol, 2017 Jul;236:155-163.
    PMID: 28399419 DOI: 10.1016/j.biortech.2017.03.105
    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.
    Matched MeSH terms: Lignin
  19. Widyasti E, Shikata A, Hashim R, Sulaiman O, Sudesh K, Wahjono E, et al.
    Enzyme Microb Technol, 2018 Apr;111:21-28.
    PMID: 29421033 DOI: 10.1016/j.enzmictec.2017.12.009
    Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compost using fibrillated OPT (f-OPT) pretreated by wet disk milling as the substrate. One thermophilic, anaerobic bacterium, strain CL-2, whose 16S rDNA gene has 98.6% sequence identity with that of Caldicoprobacter faecale DSM 20678T, exhibited high degradation activity (32.7% reduction in total dry solids of f-OPT). Strain CL-2 did not use cellulose as a carbon source, but used hemicelluloses such as xylan, arabinoxylan, starch and pectin at 70 °C. Phylogenetic and morphologic analyses and the polysaccharide use suggest that CL-2 may be classified as a novel species of Caldicoprobacter, named Caldicoprobacter sp. CL-2. To characterize enzymatic activities of CL-2, extracellular enzymes were prepared from culture broth using beechwood xylan as the carbon source. The extracellular enzymes showed high xylanase activity, but low cellulase activity, suggesting that f-OPT degradation may depend on xylanase activity. To understand the xylanase system of CL-2, a major xylanase was cloned and characterized. The xylanase (CalXyn11A) had a modular structure consisting of a glycoside hydrolase (GH) family-11 domain and a family 36 carbohydrate-binding module. CalXyn11A did not show f-OPT degradation activity, but a strong synergistic effect was observed when CalXyn11A was added to the extracellular enzyme preparation. These results indicate that, rather than working alone, CalXyn11A has an important role in enhancing total lignocellulose degradation activity by cooperation with other GHs.
    Matched MeSH terms: Lignin
  20. Neoh CH, Lam CY, Ghani SM, Ware I, Sarip SH, Ibrahim Z
    3 Biotech, 2016 Dec;6(2):143.
    PMID: 28330215 DOI: 10.1007/s13205-016-0455-1
    The biggest agricultural sector that contributes to the Malaysian economy is the oil palm industry. The effluent generated during the production of crude palm oil known as palm oil mill effluent (POME). POME undergoes anaerobic treatment that requires long retention time and produces large amount of methane that consequently contributes to global warming. In this study, an isolated bacteria was selected based on its ability to degrade kraft lignin (KL) and identified as Ochrobactrum sp. The bacteria were able to treat POME (from anaerobic pond) under the aerobic condition without addition of nutrient, resulting in a significant chemical oxygen demand (COD) removal of 71 %, removal rate of 1385 mg/l/day, and 12.3 times higher than that of the ponding system. It has also resulted in 60 % removal of ammoniacal nitrogen and 55 % of total polyphenolic after 6-day treatment period with the detection of lignocellulolytic enzymes.
    Matched MeSH terms: Lignin
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links