Displaying publications 1 - 20 of 326 in total

Abstract:
Sort:
  1. Tan EW, Simon SE, Numan A, Khalid M, Tan KO
    Colloids Surf B Biointerfaces, 2024 Mar;235:113793.
    PMID: 38364521 DOI: 10.1016/j.colsurfb.2024.113793
    Breast cancer is a global health concern that requires personalized therapies to prevent relapses, as conventional treatments may develop resistance over time. Photothermal therapy using spectral radiation or intense light emission is a broad-spectrum treatment that induces hyperthermia-mediated cancer cell death. MXene, a two-dimensional material, has been reported to have potential biological applications in photothermal therapy for cancer treatment. In this study, we investigated the apoptotic activity of MXene and UV-irradiated MXene in MCF-7 breast cancer cells by treating them with varying concentrations of MXene. The cytotoxicity of MXene and UV was evaluated by analyzing cellular morphology, nuclei condensation, caspase activation, and apoptotic cell death. We also assessed the effect of the combined treatment on the expression and cellular distribution of Tubulin, a key component of microtubules required for cell division. At low concentrations of MXene (up to 100 µg/ml), the level of cytotoxicity in MCF-7 cells was low. However, the combined treatment of MXene and UV resulted in a synergistic increase in cytotoxicity, causing rounded cellular morphology, condensed nuclei, caspase activation, and apoptotic cell death. Furthermore, the treatment reduced Tubulin protein expression and cellular distribution, indicating a potent inducer of cell death with potential application for cancer treatment. The study demonstrates that the combined treatment of MXene and UVB irradiation is a promising strategy for inducing apoptotic cell death in breast cancer cells, suggesting its potential as a therapeutic intervention for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  2. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2023 Nov 14;28(22).
    PMID: 38005306 DOI: 10.3390/molecules28227585
    α-mangostin (AM) is a promising natural anticancer agent that can be used in cancer research. However, its effectiveness can be limited by poor solubility and bioavailability. To address this issue, chitosan-based nanoparticles (CSNPs) have been investigated as a potential delivery system to enhance the cytotoxicity to cancer cells and improve selectivity against normal cells. In this study, we developed folate-conjugated chitosan nanoparticles (F-CS-NPs) using a carbodiimide-based conjugation method to attach folate to chitosan (CS), which have different molecular weights. The NPs were crosslinked using tripolyphosphate (TPP) via ionic gelation. To characterize the F-CS-NPs, we utilized various analytical techniques, including transmission electron microscopy (TEM) to evaluate the particle size and morphology, Fourier-transform infrared spectroscopy (FTIR) to confirm the presence of functional groups, and ultraviolet-visible spectroscopy (UV-Vis) to measure the absorption spectrum and confirm the presence of folate. The particle size of AM-F-CS-NPs ranged from 180 nm to 250 nm, with many having favorable charges ranging from +40.33 ± 3.4 to 10.69 ± 1.3 mV. All NPs exhibited the same spherical morphology. The use of F-CS-NPs increased drug release, followed by a sustained release pattern. We evaluated the cytotoxicity of AM, AM-F-CS-HMW, and AM-F-CS-LMW NPs against MCF-7 cells and found IC50 values of 8.47 ± 0.49, 5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively. These results confirm the improved cytotoxicity of AM in MCF-7 cells when delivered via F-CS-NPs. Overall, our in vitro study demonstrated that the properties of F-CS-NPs greatly influence the cytotoxicity of AM in MCF-7 breast cancer cells (significantly different (p < 0.05)). The use of F-CS-NPs as a drug-delivery system for AM may have the potential to develop novel therapies for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  3. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
    Matched MeSH terms: MCF-7 Cells
  4. Jamil M, Mustafa IS, Sahul Hamid SB, Ahmed NM, Khazaalah TH, Godwin E, et al.
    Colloids Surf B Biointerfaces, 2023 Aug;228:113423.
    PMID: 37390675 DOI: 10.1016/j.colsurfb.2023.113423
    The novelty of this work is the conjugation of poly(ethylene) oxide (PEO) with the erbium oxide (Er2O3) nanoparticles using the electrospinning technique. In this work, synthesised PEO-coated Er2O3 nanofibres were characterised and evaluated for their cytotoxicity to assess their potential use as diagnostic nanofibres for magnetic resonance imaging (MRI). PEO has significantly impacted nanoparticle conductivity due to its lower ionic conductivity at room temperature. The findings showed that the surface roughness was improved over the nanofiller loading, implying an improvement in cell attachment. The release profile performed for drug-controlling purposes has demonstrated a stable release after 30 min. Cellular response in MCF-7 cells showed high biocompatibility of the synthesised nanofibres. The cytotoxicity assay results showed that the diagnostic nanofibres had excellent biocompatibility, indicating the feasibility for diagnosis purposes. With excellent contrast performance, the PEO-coated Er2O3 nanofibres developed novel T2 and T1-T2 dual-mode MRI diagnostic nanofibres leading to better cancer diagnosis. In conclusion, this work has demonstrated that the conjugation of PEO-coated Er2O3 nanofibres improved the surface modification of the Er2O3 nanoparticles as a potential diagnostic agent. Using PEO in this study as a carrier or polymer matrix significantly influenced the biocompatibility and internalisation efficiency of the Er2O3 nanoparticles without triggering any morphological changes after treatment. This work has suggested permissible concentrations of PEO-coated Er2O3 nanofibres for diagnostic uses.
    Matched MeSH terms: MCF-7 Cells
  5. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
    Matched MeSH terms: MCF-7 Cells
  6. Ranneh Y, Abu Bakar MF, Md Akim A, Bin Baharum Z, S Ellulu M, Fadel A
    Asian Pac J Cancer Prev, 2023 Jul 01;24(7):2473-2483.
    PMID: 37505782 DOI: 10.31557/APJCP.2023.24.7.2473
    BACKGROUND: The objective of this study was to investigate the potential anti-proliferative activities of a methanolic extract of cocoa leaves (CL) obtained through sequential partition and fractionation against MCF-7 breast cancer cells.  Methods: The methanolic extract of CL was partitioned in three separated solvents (hexane, dichloromethane, and methanol). Hexane partition was the most potent against MCF-7 cells growth with the lowest IC50 value. Then, it was subjected to two fractionation procedures, resulting in the identification of the CL bioactive fraction (II-F7) with potent toxicity against MCF-7 cells.

    RESULTS: Further investigation into CL bioactive fraction (II-F7) revealed significant dose-dependent growth inhibitory effects on MCF-7 cells, which were attributed to the induction of apoptosis, as evidenced by the presence of apoptotic bodies, fragmented DNA, and disruption of mitochondrial membrane potential. Additionally, treatment with CL bioactive fraction (II-F7) upregulated the expression of pro-apoptotic genes (DDIT3, GADD45G and HRK) and significantly increased the activities of caspase-8 and caspase-9.

    CONCLUSION: Overall, this study suggests that bioactive fraction (II-F7) from CL extract has significant and selective cytotoxicity against MCF-7 cells through inducing apoptosis and has potential as a therapeutic agent for breast cancer treatment.

    Matched MeSH terms: MCF-7 Cells
  7. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, et al.
    Sci Rep, 2023 Feb 15;13(1):2683.
    PMID: 36792619 DOI: 10.1038/s41598-023-29566-0
    The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
    Matched MeSH terms: MCF-7 Cells
  8. Madden SF, Cremona M, Farrelly AM, Low WH, McBryan J
    Cancer Gene Ther, 2023 Feb;30(2):324-334.
    PMID: 36266450 DOI: 10.1038/s41417-022-00548-0
    To prevent the development of endocrine-resistant breast cancer, additional targeted therapies are increasingly being trialled in combination with endocrine therapy. The molecular mechanisms facilitating cancer cell survival during endocrine treatment remain unknown but could help direct selection of additional targeted therapies. We present a novel proteomic timecourse dataset, profiling potential drug targets in a population of MCF7 cells during 1 year of tamoxifen treatment. Reverse phase protein arrays profiled >70 proteins across 30 timepoints. A biphasic response to tamoxifen was evident, which coincided with changes in growth rate. Tamoxifen strongly impeded cell growth for the first 160 days, followed by gradual growth recovery and eventual resistance development. The growth-impeded phase was distinguished by the phosphorylation of Stat3 (y705) and Src (y527). Tumour tissue from patients treated with neo-adjuvant endocrine therapy (<4 months) also displayed increased Stat3 and Src signalling. Inhibitors of Stat3 (napabucasin) and Src (dasatinib), were effective at killing tamoxifen-treated MCF7 and T47D cells. Sensitivity to both drugs was significantly enhanced once tamoxifen had induced the growth-impeded phase. This novel proteomic resource identifies key mechanisms enabling cell survival during tamoxifen treatment. It provides valuable insight into potential drug combinations and timing that may prevent the development of endocrine resistance.
    Matched MeSH terms: MCF-7 Cells
  9. Ibnat N, Chowdhury EH
    Sci Rep, 2023 Jan 11;13(1):536.
    PMID: 36631481 DOI: 10.1038/s41598-022-25511-9
    Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  10. Li X, Peng B, Li J, Tian M, He L
    Protein Pept Lett, 2023;30(12):992-1000.
    PMID: 38013437 DOI: 10.2174/0109298665245603231106050224
    OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

    METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

    RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

    CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

    Matched MeSH terms: MCF-7 Cells
  11. Pian AK, Foong CP, Hamid RA
    Life Sci, 2022 Dec 15;311(Pt B):121161.
    PMID: 36375571 DOI: 10.1016/j.lfs.2022.121161
    We have previously reported the inhibition of thioredoxin reductase (TrxR) and invasion by tricyclohexylphosphine gold (I) n-mercaptobenzoate (n = 2, 3, 4) labeled as 1-3 towards MCF-7 cells, in vitro. Nevertheless, the mode of death and its apoptotic pathway has yet to be revealed. The main aim of this study is to investigate the anti-neoplastic activity of this phosphanegold (I) thiolates against breast adenocarcinoma cells, MCF-7. Herein, we explored the role of gold(I) series, 1-3 for their apoptosis-inducing ability against MCF-7 cells. They were scrutinized for their antiproliferative activities which exhibited their IC50 values of 8.14 μM ± 0.10, 7.26 μM ± 0.33, and 9.03 μM ± 0.69, respectively, and indicated better cytotoxicities than that of cisplatin (positive control). Further, the mechanisms of their actions were studied by analyzing the status of ROS generation (by DCFH-DA), cytochrome c release (by ELISA), and activation of caspases 3/7, 8, 9, and 10, annexin V staining and cell cycle analysis by flow cytometry, respectively. It was observed that the compounds, 1-3 can promote ROS generation, cytochrome c release, and activation of caspases 3/7, caspase 8, caspase 9, and caspase 10 on MCF-7 cells. In addition, the compounds are shown to induce MCF-7 cell arrest at S-phase. Gene analysis via PCR array further clarified their effects by modulating the related genes upon the compounds' treatment. Further investigation on other breast cancer cells as well as in vivo studies on these compounds will further increase their potential as anti-breast cancer agents.
    Matched MeSH terms: MCF-7 Cells
  12. Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB
    Biomater Adv, 2022 Dec;143:213178.
    PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178
    Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
    Matched MeSH terms: MCF-7 Cells
  13. Qatrun Nada D, Masniza ML, Abdullah N, Marlini M, Elias MH, Pathmanathan SG, et al.
    Malays J Pathol, 2022 Dec;44(3):367-385.
    PMID: 36591707
    Breast cancer remains a significant cause of mortality in females worldwide, despite advances in technology and treatment. MicroRNA expression in breast cancer is studied both as potential biomarkers and for therapeutic purposes. Accumulated evidence revealed microRNA profile of various types of cancer cells following antineoplastic treatment. The progression of research in this area provides better understanding on the anti-cancer mechanism of various natural compounds and drugs specifically on the microRNA regulation. Hence, we aim to systematically review differentially expressed microRNA in MCF-7, a commonly studied breast cancer cell line, after treatment with anti-neoplastic agents. Relevant keywords were used to screen for research articles that reported on the differentially expressed microRNAs in experimental models of MCF-7 before and after anti-neoplastic treatment. Target genes of microRNAs were identified from MiRTarbase and further in silico functional analysis of the target genes were performed using DAVID bioinformatic resources. Two upregulated microRNAs (mir-200c and let-7d) and 3 downregulated microRNAs (mir-27a, mir-27b and mir-203) were identified by highest number of studies. Three microRNAs (let-7a, mir-23a and mir-7) showed inconsistent direction of expression. Genes functional analysis revealed the regulatory effect of microRNA on genes related to angiogenesis, hypoxia, P53, FoxO and PI3K-AKT signalling. Clusters of genes associated to the pathway of angiogenesis, cancers, cell proliferation and apoptosis were noted through protein-protein interaction analysis. MicroRNAs, especially the mir-200c, let-7d, mir-27a, mir-27b and mir-203 from this review could be further validated experimentally to serve as molecular target or biomarkers for anti-neoplastic therapy.
    Matched MeSH terms: MCF-7 Cells
  14. Tan AS, Singh J, Rezali NS, Muhamad M, Nik Mohamed Kamal NNS, Six Y, et al.
    Molecules, 2022 Aug 23;27(17).
    PMID: 36080141 DOI: 10.3390/molecules27175373
    The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).
    Matched MeSH terms: MCF-7 Cells
  15. Ismail NZ, Adebayo IA, Mohamed WAS, Mohamad Zain NN, Arsad H
    Mol Biol Rep, 2021 Nov;48(11):7361-7370.
    PMID: 34665399 DOI: 10.1007/s11033-021-06743-w
    BACKGROUND: C. vespertiliomis extracts were evaluated for antiproliferative and apoptosis effect on breast cancer (MCF7) cells.

    METHODS AND RESULTS: The leaves extracts were analysed for its antiproliferative effect on breast cancer (MCF7) cells and normal epithelial breast (MCF 10A) cells using Sulforhodamine B (SRB) assay. The selective extract was evaluated for its ability to induce apoptosis using Annexin V-FITC apoptosis staining and the expression of molecular genes using qualitative reverse transcription-polymerase chain reaction (RT-PCR) against MCF7 cells. Gas chromatography-mass spectrometry (GC-MS) was used to identify the compounds from the selective extract. The findings showed that dichloromethane fraction (CV-Dcm) extract had high antiproliferative effect against MCF7 cells (IC50 = 24 µg/mL, selective index (SI) = 8.17). The percentages of apoptosis cells in CV-Dcm-treated MCF7 cells was 58.8%. The CV-Dcm extract induced downregulation of PCNA level. The apoptotic genes were also triggered in both extrinsic and intrinsic signaling pathways, affecting a 1.5-fold increase in BAX, 1.4-fold increase in cytochrome c, 1.3-fold increase in caspase-8, 1.7-fold increase in caspase-3 and 0.5-fold-decrease in BCL-2. Treated MCF7 cells also activated P53-dependent apoptotic death pathway.

    CONCLUSIONS: The present work strongly suggests that high efficacy of CV-Dcm extract was attributed to its antiproliferative and apoptosis-inducing activation in MCF7 cells, most likely due to its favourable compounds.

    Matched MeSH terms: MCF-7 Cells
  16. Ramli MM, Rosman AS, Mazlan NS, Ahmad MF, Halin DSC, Mohamed R, et al.
    Sci Rep, 2021 10 19;11(1):20702.
    PMID: 34667216 DOI: 10.1038/s41598-021-00171-3
    Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.
    Matched MeSH terms: MCF-7 Cells
  17. Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM
    Nat Prod Res, 2021 Sep;35(18):3166-3170.
    PMID: 31726856 DOI: 10.1080/14786419.2019.1690489
    Rhizomes of Curcuma caesia are traditionally used to treat cancer in India. The aim is to isolate chemical constituents from C. caesia rhizomes through bioassay-guided fractionation. The extract, hexanes and chloroform fractions showed effect on MCF-7 and MDA-MB-231cells in cell viability assay. The chromatographic separation afforded germacrone (1), zerumbone (2), furanodienone (3), curzerenone (4), curcumenol (5), zederone (6), curcumenone (7), dehydrocurdione (8) from hexanes fraction and curcuminol G (9), curcuzederone (10), (1S, 10S), (4S,5S)-germacrone-1 (10), 4-diepoxide (11), wenyujinin B (12), alismoxide (13), aerugidiol (14), zedoarolide B (15), zedoalactone B (16), zedoarondiol (17), isozedoarondiol (18) from chloroform fraction. This is first report of compounds 2, 9-13, 15-18 from C. caesia. The study demonstrated compounds 1-4 and 10 are the bioactive compounds. The effect of curcuzederone (10) on MDA-MB-231 cell migration showed significant inhibition in scratch and Transwell migration assays. The results revealed that curcuzederone could be a promising drug to treat cancer.
    Matched MeSH terms: MCF-7 Cells
  18. Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, et al.
    Nanomedicine (Lond), 2021 09;16(22):1937-1961.
    PMID: 34431317 DOI: 10.2217/nnm-2021-0070
    Aims: To evaluate the anti breast-cancer activity, biocompatibility and toxicity of poly(d,l)-lactic-co-glycolic acid (PLGA)-encapsulated quercetin nanoparticles (Q-PLGA-NPs). Materials & methods: Quercetin was nano-encapsulated by an emulsion-diffusion process, and the nanoparticles were fully characterized through Fourier transform infrared spectroscopy, x-ray diffractions, FESEM and zeta-sizer analysis. Activity against CAL51 and MCF7 cell lines were assessed by DNA fragmentation assays, fluorescence microscopy, and acridine-orange, and propidium-iodide double-stainings. Biocompatibility towards red blood cells and toxicity towards mice were also explored. Results: The Q-PLGA-NPs exhibited apoptotic activity against the cell lines. The murine in vivo studies showed no significant alterations in the liver and kidney's functional biomarkers, and no apparent abnormalities, or tissue damages were observed in the histological images of the liver, spleen, lungs, heart and kidneys. Conclusion: The study established the preliminary in vitro efficacy and in vivo safety of Q-PLGA-NPs as a potential anti-breast cancer formulation.
    Matched MeSH terms: MCF-7 Cells
  19. Gul I, Yunus U, Ajmal M, Bhatti MH, Chaudhry GE
    Biomed Mater, 2021 Aug 31;16(5).
    PMID: 34375958 DOI: 10.1088/1748-605X/ac1c61
    Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
    Matched MeSH terms: MCF-7 Cells
  20. Barathan M, Zulpa AK, Vellasamy KM, Mariappan V, Shivashekaregowda NKH, Ibrahim ZA, et al.
    In Vivo, 2021 8 20;35(5):2675-2685.
    PMID: 34410956 DOI: 10.21873/invivo.12551
    BACKGROUND/AIM: Isoniazid is an antibiotic used for the treatment of tuberculosis. Previously, we found that the isoniazid derivative (E)-N'-(2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) could be developed as novel antimycobacterial agent by lead optimization. We further explored the ability of this compound compared to zerumbone in inhibiting the growth of MCF-7 breast cancer cells.

    MATERIALS AND METHODS: Cytotoxicity was measured by the MTT assay and further confirmed via apoptosis, ROS, cell cycle, DNA fragmentation and cytokine assays.

    RESULTS: ITHB4 demonstrated a lower IC50 compared to zerumbone in inhibiting the proliferation of MCF-7 cells. ITHB4 showed no toxicity against normal breast and human immune cells. Apoptosis assay revealed that ITHB4, at a concentration equal to the IC50, induces apoptosis of MCF-7 cells and cell cycle arrest at the sub-G1 and G2/M phases. ITHB4 triggered accumulation of intracellular ROS and nuclear DNA fragmentation. Secretion of pro-inflammatory cytokines induced inflammation and potentially immunogenic cell death.

    CONCLUSION: ITHB4 has almost similar chemotherapeutic properties as zerumbone in inhibiting MCF-7 growth, and hence provide the basis for further experiments in animal models.

    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links