Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Macrophages/drug effects
  2. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Macrophages/drug effects
  3. Yap WH, Ooi BK, Ahmed N, Lim YM
    J Biosci, 2018 Jun;43(2):277-285.
    PMID: 29872016
    Secretory phospholipase A2-IIA (sPLA2-IIA) is one of the key enzymes causing lipoprotein modification and vascular inflammation. Maslinic acid is a pentacyclic triterpene which has potential cardioprotective and anti-inflammatory properties. Recent research showed that maslinic acid interacts with sPLA2-IIA and inhibits sPLA2-IIA-mediated monocyte differentiation and migration. This study elucidates the potential of maslinic acid in modulating sPLA2-IIA-mediated inflammatory effects in THP-1 macrophages. We showed that maslinic acid inhibits sPLA2-IIA-mediated LDL modification and suppressed foam cell formation. Further analysis revealed that sPLA2-IIA only induced modest LDL oxidation and that inhibitory effect of maslinic acid on sPLA2-IIA-mediated foam cells formation occurred independently of its anti-oxidative properties. Interestingly, maslinic acid was also found to significantly reduce lipid accumulation observed in macrophages treated with sPLA2-IIA only. Flow cytometry analysis demonstrated that the effect observed in maslinic acid might be contributed in part by suppressing sPLA2-IIA-induced endocytic activity, thereby inhibiting LDL uptake. The study further showed that maslinic acid suppresses sPLA2-IIA-induced up-regulation of PGE2 levels while having no effects on COX-2 activity. Other pro-inflammatory mediators TNF-a and IL-6 were not induced in sPLA2-IIA-treated THP-1 macrophages. The findings of this study showed that maslinic acid inhibit inflammatory effects induced by sPLA2-IIA, including foam cells formation and PGE2 production.
    Matched MeSH terms: Macrophages/drug effects
  4. Yap ACS, Li X, Yap YHY, Razif MFM, Jamil AHA, Ng ST, et al.
    Int J Med Mushrooms, 2020;22(10):967-977.
    PMID: 33426826 DOI: 10.1615/IntJMedMushrooms.2020036351
    Ophiocordyceps sinensis (=Cordyceps sinensis) has been known for its various medicinal properties, in particular immunomodulatory activities associated with its polysaccharides. In this study, the fruiting body of O. sinensis cultivar OCS02® was investigated for its chemical composition and monosaccharide profile. Cold water extract (CWE) obtained from this fruiting body was fractionated by molecular weight (MW) into high (HMW), medium (MMW), and low (LMW) fractions. Polysaccharides in the extract and fractions were identified as heteroglycans containing mostly glucose and mannose with small amounts of galactose, fucose, arabinose, and xylose. The immunomodulatory potential of these heteroglycans was evaluated by induction of cytokine/chemokine secretion using murine macrophage RAW 264.7. All treatments showed significant modulation of IL-6, IL-9, MIP-2, and TIMP-1, especially for CWE, HMW, and MMW, which might be due to their high ratios of glucose and the presence of protein. Further investigation on the structure-function relationship of these fruiting body polysaccharide fractions is needed to delineate the underlying mechanism of their immunomodulatory effect both in vitro and in vivo.
    Matched MeSH terms: Macrophages/drug effects
  5. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Macrophages/drug effects*
  6. Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee LH, et al.
    J Cell Mol Med, 2020 01;24(1):722-736.
    PMID: 31680470 DOI: 10.1111/jcmm.14780
    Evidence demonstrates that M1 macrophage polarization promotes inflammatory disease. Here, we discovered that (R)-salbutamol, a β2 receptor agonist, inhibits and reprograms the cellular metabolism of RAW264.7 macrophages. (R)-salbutamol significantly inhibited LPS-induced M1 macrophage polarization and downregulated expressions of typical M1 macrophage cytokines, including monocyte chemotactic protein-1 (MCP-1), interleukin-1β (IL-1β) and tumour necrosis factor α (TNF-α). Also, (R)-salbutamol significantly decreased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and reactive oxygen species (ROS), while increasing the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. In contrast, (S)-salbutamol increased the production of NO and ROS. Bioenergetic profiles showed that (R)-salbutamol significantly reduced aerobic glycolysis and enhanced mitochondrial respiration. Untargeted metabolomics analysis demonstrated that (R)-salbutamol modulated metabolic pathways, of which three metabolic pathways, namely, (a) phenylalanine metabolism, (b) the pentose phosphate pathway and (c) glycerophospholipid metabolism were the most noticeably impacted pathways. The effects of (R)-salbutamol on M1 polarization were inhibited by a specific β2 receptor antagonist, ICI-118551. These findings demonstrated that (R)-salbutamol inhibits the M1 phenotype by downregulating aerobic glycolysis and glycerophospholipid metabolism, which may propose (R)-salbutamol as the major pharmacologically active component of racemic salbutamol for the treatment of inflammatory diseases and highlight the medicinal value of (R)-salbutamol.
    Matched MeSH terms: Macrophages/drug effects
  7. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Macrophages/drug effects
  8. Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM
    J Ethnopharmacol, 2011 Jun 14;136(1):75-82.
    PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragyna speciosa Korth (Rubiaceae) is one of the medicinal plants used traditionally to treat various types of diseases especially in Thailand and Malaysia. Its anti-inflammatory and analgesic properties in its crude form are well documented. In this study, the cellular mechanism involved in the anti-inflammatory effects of mitragynine, the major bioactive constituent, was investigated.

    MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).

    RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.

    CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.

    Matched MeSH terms: Macrophages/drug effects
  9. Tham YY, Choo QC, Muhammad TST, Chew CH
    Mol Biol Rep, 2020 Dec;47(12):9595-9607.
    PMID: 33259010 DOI: 10.1007/s11033-020-06019-9
    Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.
    Matched MeSH terms: Macrophages/drug effects*
  10. Tan WC, Kuppusamy UR, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2018;20(2):155-163.
    PMID: 29773007 DOI: 10.1615/IntJMedMushrooms.2018025445
    Ganoderma neo-japonicum is an annual polypore that grows on decaying bamboo in the forests of Malaysia. The indigenous Temuan tribe uses this species as a medicinal mushroom to cure fever and epilepsy and to improve body strength. The potential use of G. neo-japonicum in genoprotection and DNA repair was established using a single-cell gel electrophoresis (comet) assay. The effects of the ethanol and hot aqueous extracts from wild and cultivated basidiocarps, solid substrate-fermented (SSF) wheat grains, and mycelia via submerged culture on H2O2-damaged murine RAW264.7 macrophages were investigated. An ethanol extract from wild basidiocarps showed the most significant protective effect on murine RAW264.7 macrophages, followed by ethanol and hot water extracts of cultivated basidiocarps, and this effect was dose dependent. However, only the ethanol extracts from SSF and submerged culture showed significant protective effects compared with the control. As for DNA repair ability, only the ethanol extract from wild and cultivated basidiocarps showed significant results when compared with the negative control. The findings suggest the potential therapeutic use of G. neo-japonicum in genome protection and as a DNA repair stimulator.
    Matched MeSH terms: Macrophages/drug effects
  11. Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, et al.
    J Ethnopharmacol, 2014 Apr 28;153(2):435-45.
    PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051
    The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
    Matched MeSH terms: Macrophages/drug effects*
  12. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Macrophages/drug effects*
  13. Sum AYC, Li X, Yeng YYH, Razif MFM, Jamil AHA, Ting NS, et al.
    Int J Med Mushrooms, 2020;22(8):803-814.
    PMID: 33389874 DOI: 10.1615/IntJMedMushrooms.2020035658
    Natural compounds found in Lignosus rhinocerus like polysaccharides and polysaccharide-protein complexes have the capabilities to modulate the immune system. It possesses antitumor and anti-inflammatory properties and is commonly used in Southeast Asia and Southern China to alleviate illness. To investigate its immunomodulating properties, composition of polysaccharides and the expression of cytokines/chemokines from L. rhinocerus (TM02®) cultivar treated RAW 264.7 were explored. It was revealed, CWE contains linear polysaccharides with 1,4-linkages and rhinoprolycan fraction (HMW & MMW) possesses 1,4-Glcp and 1,6-Glcp backbone and branched chain (1,3,6-Glcp, 1,4,6-Glcp, 1,3,6-Glcp, 1,2,4,6-Glcp). Cytokines profile showed upregulation from CWE (IL-5: 12.078 ± 1.225), HMW (IL-6: 7.297 ± 0.338; TIMP-1: 3.358 ± 0.200), MMW (IL-5: 15.412 ± 5.823; TIMP-1: 1.747 ± 0.053), and LMW (MIP-2: 3.495 ± 0.416; TIMP-1: 7.573 ± 0.088) and possible involvement of NF-κB and MAPK signaling pathway. Further in vivo studies are needed to fully understand the immunomodulatory effects of TM02®.
    Matched MeSH terms: Macrophages/drug effects
  14. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2006 Dec;21(6):347-52.
    PMID: 17064391
    The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans.
    Matched MeSH terms: Macrophages/drug effects
  15. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: Macrophages/drug effects
  16. Sosroseno W, Herminajeng E, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2004 Apr;19(2):65-70.
    PMID: 14871343
    The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW 264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or NG-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW 264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.
    Matched MeSH terms: Macrophages/drug effects*
  17. Sosroseno W, Bird PS, Seymour GJ
    J Microbiol Immunol Infect, 2003 Dec;36(4):229-35.
    PMID: 14723250
    The aim of this study was to determine the role of intracellular proteins in phagocytosis of opsonized Porphyromonas gingivalis by RAW264.7 cells, a murine macrophage-like cell line. This periodontopathogen was grown anaerobically and opsonized with an IgG2a murine monoclonal anti-P. gingivalis lipopolysaccharide antibody. RAW264.7 cells were preincubated with protein tyrosine kinase inhibitors (staurosporine and genistein), protein kinase C inhibitors (phorbol myristic acetate and bisindolylmaleimide), a serine/threonine phosphatase inhibitor (okadaic acid), a phosphatidylinositol 3-kinase inhibitor (worthmannin), phospholipase A2 inhibitors (bromophenacyl bromide and nordihydroguaiaretic acid), phospholipase C inhibitors (p-chloromercuriphenyl sulfonate and neomycin sulfate), an actin-filament depolymerizer (cytochalasin D), and a microtubule disrupting agent (colchicine). Inhibitor-treated macrophages were then incubated with the opsonized P. gingivalis and the phagocytosed cells determined microscopically. The results showed the percentage of the phagocytosed organisms decreased when the cells were preincubated with protein tyrosine kinase, protein kinase C, protein phosphatase and phosphatidylinositol 3-kinase inhibitors. Of interest, preincubation with phorbol myristic acetate for 30 min increased the ability of RAW264.7 cells to phagocytose the opsonized organisms. Phospholipase A2 and phospholipase C inhibitors only slightly reduced the number of phagocytosed organisms. The results indicated that opsonophagocytosis of P. gingivalis by RAW264.7 cells might be determined by the activation of protein tyrosine kinase, protein kinase C, protein phosphatases, and phosphatidylinositol 3-kinase inhibitor. Both phospholipase A2 and phospholipase C would appear to be involved to a lesser extent. The opsonophagocytosis of this periodontopathogen would also appear to be dependent upon actin and microtubule polymerization.
    Matched MeSH terms: Macrophages/drug effects
  18. Sosroseno W
    Immunopharmacol Immunotoxicol, 2004 May;26(2):309-13.
    PMID: 15209366
    The aim of this study was to determine the effect of L-arginine on Porphyromonas gingivalis-induced phagocytosis by RAW264.7 cells. The cells were pretreated with L-arginine or D-arginine prior to incubation with either unopsonized or opsonized P. gingivalis. In other experiments, the cells were pretreated with L-arginine and various concentrations of NMLA (N(G)-monomethyl-L-arginine) prior to incubation with the bacteria. The phagocytosis was microscopically assessed and determined by the phagocytic index. The results showed that L-arginine, but not D-arginine enhances the ability of RAW264.7 cells to engulf the bacteria. The upregulatory effect of L-arginine on P. gingivalis-induced phagocytosis was abolished by NMLA. The results of the present study suggest that L-arginine may upregulate the P. gingivalis-induced phagocytic activity of RAW264.7 cells, perhaps, via modulation of nitric oxide synthase.
    Matched MeSH terms: Macrophages/drug effects*
  19. Sok SPM, Ori D, Wada A, Okude H, Kawasaki T, Momota M, et al.
    Int Immunol, 2021 06 18;33(7):373-386.
    PMID: 33830232 DOI: 10.1093/intimm/dxab016
    The nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing (NLRP) 3 inflammasome is a multiprotein complex that triggers Caspase-1-mediated IL-1β production and pyroptosis, and its dysregulation is associated with the pathogenesis of inflammatory diseases. 1'-Acetoxychavicol acetate (ACA) is a natural compound in the rhizome of tropical ginger Alpinia species with anti-microbial, anti-allergic and anti-cancer properties. In this study, we found that ACA suppressed NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and human THP-1 monocytes. ACA inhibited Caspase-1 activation and IL-1β production by NLRP3 agonists such as nigericin, monosodium urate (MSU) crystals, and ATP. Moreover, it suppressed oligomerization of the adapter molecule, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1-mediated cleavage of pyroptosis executor Gasdermin D. Mechanistically, ACA inhibited generation of mitochondrial reactive oxygen species (ROS) and prevented release of oxidized mitochondrial DNA, which trigger NLRP3 inflammasome activation. ACA also prevented NLRP3 inflammasome activation in vivo, as evidenced in the MSU crystal-induced peritonitis and dextran sodium sulfate-induced colitis mouse models accompanied by decreased Caspase-1 activation. Thus, ACA is a potent inhibitor of the NLRP3 inflammasome for prevention of NLRP3-associated inflammatory diseases.
    Matched MeSH terms: Macrophages/drug effects
  20. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Macrophages/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links