Displaying publications 1 - 20 of 208 in total

Abstract:
Sort:
  1. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Magnesium Sulfate
  2. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Magnesium/pharmacology*
  3. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Magnesium Chloride/chemistry
  4. Agarwal R, Iezhitsa I, Awaludin NA, Ahmad Fisol NF, Bakar NS, Agarwal P, et al.
    Exp Eye Res, 2013 May;110:35-43.
    PMID: 23428743 DOI: 10.1016/j.exer.2013.02.011
    Cataract, a leading cause of blindness, is characterized by lenticular opacities resulting from denaturation of lens proteins due to activation of calcium-dependent enzyme, calpain. Magnesium (Mg(2+)) plays an important role not only in maintaining a low lenticular calcium (Ca(2+)) and sodium concentration but also in preserving the lens redox status. Taurine has also been shown to reduce lenticular oxidative stress. Present study evaluated the anticataract effects of magnesium taurate in vivo and in vitro. Among the five groups of 9 Sprague Dawley rats each, two groups received 30% galactose diet with topical (GDMT) or oral treatment (GDMO) with magnesium taurate. Two groups received 30% galactose diet with topical (GDT) or oral vehicle (GDO). Remaining 1 group received normal diet (ND). Weekly slit lamp examination was done during 21 days experimental period and then all rats were sacrificed; Ca/Mg ratio and antioxidant parameters including reduced glutathione (GSH), catalase and superoxide dismutase (SOD) activities were measured in the isolated lenses using ELISA. In the in vitro study, 2 groups of 10 normal rat lenses were incubated in Dulbecco's Modified Eagle's Medium (DMEM) with galactose while 1 similar group was incubated in DMEM without galactose. In one of the groups, galactose containing medium was supplemented with magnesium taurate. After 48 h of incubation, lenses were photographed and Ca(2+)/Mg(2+) ratio and antioxidant parameters were measured as for in vivo study. The in vivo study, at the end of experimental period, demonstrated delay in the development of cataract with a mean opacity index of 0.53 ± 0.04 and 0.51 ± 0.03 in GDMO (p < 0.05 versus GDO) and GDMT (p < 0.01 versus GDT) respectively. Histopathological grading showed a lower mean value in treated groups, however, the differences from corresponding controls were not significant. Lenticular Ca(2+)/Mg(2+) ratio with a mean value of 1.20 ± 0.26 and 1.05 ± 0.26 in GDMO and GDMT was significantly lower than corresponding controls (p < 0.05) and in GDMT no significant difference was observed from ND. Lenticular GSH and catalase activities were significantly lower and SOD activity was significantly higher in all galactose fed groups. However, in GDMT, GSH and catalase were significantly higher than corresponding control with mean values of 0.96 ± 0.30 μmol/gm lens weight and 56.98 ± 9.86 μmol/g lens protein respectively (p < 0.05 for GSH and p < 0.01 for catalase). SOD activity with mean values of 13.05 ± 6.35 and 13.27 ± 7.61 units/mg lens protein in GDMO and GDMT respectively was significantly lower compared to corresponding controls (p < 0.05) signifying lesser upregulation of SOD due to lesser oxidative stress in treated groups. In the in vitro study, lenses incubated in magnesium taurate containing medium showed less opacity and a lower mean Ca(2+)/Mg(2+) ratio of 1.64 ± 0.03, which was not significantly different from lenses incubated in DMEM without galactose. Lens GSH and catalase activities were restored to normal in lenses incubated in magnesium taurate containing medium. Both in vivo and in vitro studies demonstrated that treatment with magnesium taurate delays the onset and progression of cataract in galactose fed rats by restoring the lens Ca(2+)/Mg(2+) ratio and lens redox status.
    Matched MeSH terms: Magnesium/metabolism
  5. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin YS, et al.
    Eur J Nutr, 2016 Aug;55(5):1911-21.
    PMID: 26264387 DOI: 10.1007/s00394-015-1007-x
    PURPOSE: To compare the effects of a high-calcium vitamin D-fortified milk with added FOS-inulin versus regular milk on serum parathyroid hormone, and bone turnover markers in premenopausal (Pre-M) and postmenopausal (PM) women over 12 weeks.

    METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.

    RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P 

    Matched MeSH terms: Magnesium/blood
  6. Nasir Mohamad, Shariff Halim, Mohd Ekhwan Toriman, Nor Hidayah Abu Bakar, Ahmad Zubaidi A. Latif
    MyJurnal
    Zamzam is holy water believed by Muslim to have remedial power for all kinds of diseases. It contains
    many electrolytes and the concentration of the electrolytes may be affected by the types of container
    used for its storage. This study was carried out to determine the difference in ions concentration of
    Zamzam water stored in plastic and glass containers, and to determine cytotoxicity effects of Zamzam
    water against U-87 cell line (human primary glioblastoma cell line). Ion Chromatography (IC) was used
    to analyze the concentration. The analyzed anions in the Zamzam water include bromide, chloride,
    phosphate, nitrite, nitrate, sulfate and fluoride whereas the cations were ammonium, lithium, potassium,
    sodium, calcium and magnesium. Subsequently, MTT assay was used to determine the cytotoxicity of
    Zamzam water on U-87 cell line. This study reveals that Zamzam water anions and cations
    concentration was not statistically significant neither in plastic nor glass container. In addition, the
    Zamzam water did not cause any toxicity on the U87 cell line. We postulate that types of container do
    not have much influence on the ion concentration of Zamzam water and it is non-toxic on U87 cell line.
    Matched MeSH terms: Magnesium
  7. Daramola J, M Ekhwan T, Adepehin EJ, Mokhtar J, Lam KC, Er AC
    Heliyon, 2019 Jul;5(7):e02121.
    PMID: 31384682 DOI: 10.1016/j.heliyon.2019.e02121
    Water constitutes a major environmental and public health concerns worldwide. A large proportion of global water consumption is sourced from surface water. The dependency level on surface water is higher in developing countries, especially in rural-to-semi-urban areas, where subsurface water is not accessible. Presented in this paper is a spatiotemporal and hydrochemical quality assessment of the spring-originated Landzun Stream in Bida, Nigeria; which is usually consumed in its untreated state. Water samples were systematically collected in eighteen locations along the stream channel in both rainy and dry seasons at an equidistance interval of 500m. On-site and laboratory measurement of important physical and hydrochemical parameters were carried out using standard procedures. Water temperature in the rainy season (34-37 °C) slightly exceeds measured values in the dry season (29-33 °C). 72.22% (rainy) and 83.33% (dry) of collected samples did not meet the odourless requirement for drinking water. Similarly, estimated percentages of 66.67 and 94.44 of collected samples in rainy and dry seasons respectively have a taste. Contrary to data in the rainy season, 89%, 11%, 67% and 56% of the dry season's samples were enriched in magnesium (Mg), lead (Pb), potassium (K) and iron (Fe) respectively above the 2018 World Health Organisation guidelines for drinking water. This study further established that seasonal variation plays a major role in altering the aesthetic surface water quality. The intake of untreated surface water is a vehicle for potential water-borne diseases and allergies, hence alternative sources of drinking water for the populace dependent on the Landzun Stream is recommended to reduce risks and possible dangers of consuming the stream water.
    Matched MeSH terms: Magnesium
  8. Ng KT, Yap JLL, Izham IN, Teoh WY, Kwok PE, Koh WJ
    Eur J Anaesthesiol, 2020 Mar;37(3):212-223.
    PMID: 31977626 DOI: 10.1097/EJA.0000000000001164
    BACKGROUND: Several studies suggest that systemic magnesium reduces postoperative opioid consumption and the intensity of pain, but others report conflicting results. The efficacy and safety profile of intravenous magnesium in noncardiac surgery remain uncertain.

    OBJECTIVES: The aim of this review was to investigate the effect of intravenous magnesium on the consumption of postoperative morphine in the first 24 h in adults undergoing noncardiac surgery.

    DESIGN: Systematic review and meta-analysis with trial sequential analysis.

    DATA SOURCES: MEDLINE, EMBASE, CENTRAL from their inception until January 2019.

    ELIGIBILITY CRITERIA: All randomised clinical trials comparing intravenous magnesium versus placebo in noncardiac surgery were systematically searched in the databases. Observational studies, case reports, case series and nonsystematic reviews were excluded.

    RESULTS: Fifty-one trials (n=3311) were included for quantitative meta-analysis. In comparison with placebo, postoperative morphine consumption at 24-h was significantly reduced in the magnesium group, with a mean difference [95% confidence interval (CI)] of -5.6 mg (-7.54 to -3.66, P magnesium on postoperative morphine consumption was conclusive. Patients who received magnesium had a longer time to the first analgesia request [143 (103 to 183) min, P magnesium as part of multimodal analgesia may reduce morphine consumption in the first 24 h after surgery and delay the time to the first request for analgesia in patients undergoing noncardiac surgery. However, the included studies were of low-quality with substantial heterogeneity.

    TRIAL REGISTRATION: CRD42018086846.

    Matched MeSH terms: Magnesium
  9. Bakhsheshi-Rad HR, Hamzah E, Ying WS, Razzaghi M, Sharif S, Ismail AF, et al.
    Materials (Basel), 2021 Apr 12;14(8).
    PMID: 33921460 DOI: 10.3390/ma14081930
    Magnesium has been recognized as a groundbreaking biodegradable biomaterial for implant applications, but its use is limited because it degrades too quickly in physiological solutions. This paper describes the research on the influence of polycaprolactone (PCL)/chitosan (CS)/zinc oxide (ZnO) composite coating (PCL/CS/ZnO) on the corrosion resistance and antibacterial activity of magnesium. The PCL/CS film presented a porous structure with thickness of about 40-50 μm, while after incorporation of ZnO into the PCL/CS, a homogenous film without pores and defects was attained. The ZnO embedded in PCL/CS enhanced corrosion resistance by preventing corrosive ions diffusion in the magnesium substrate. The corrosion, antibacterial, and cell interaction mechanism of the PCL/CS/ZnO composite coating is discussed in this study. In vitro cell culture revealed that the PCL/CS coating with low loaded ZnO significantly improved cytocompatibility, but coatings with high loaded ZnO were able to induce some cytotoxicity osteoblastic cells. It was also found that enhanced antibacterial activity of the PCL/CS/ZnO coating against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, while less significant antibacterial activity was detected for uncoated Mg and PCL/CS coating. Based on the results, the PCL/CS coatings loaded with low ZnO content may be recommended as a candidate material for biodegradable Mg-based orthopedic implant applications.
    Matched MeSH terms: Magnesium
  10. Ngatiman M, Jami MS, Abu Bakar MR, Subramaniam V, Loh SK
    Heliyon, 2021 Jan;7(1):e05931.
    PMID: 33490684 DOI: 10.1016/j.heliyon.2021.e05931
    The formation of struvite crystals or magnesium ammonium phosphate (MgNH4PO4) in palm oil mill effluent (POME) occurs as early as in the secondary stage of POME treatment system. Its growth continues in the subsequent tertiary treatment which reduces piping diameter, thus affecting POME treatment efficiency. Hypothesis. The beneficial use of the crystal is the motivation. This occurrence is rarely reported in scientific articles despite being a common problem faced by palm oil millers. The aim of this study is to characterize struvite crystals found in an anaerobic digester of a POME treatment facility in terms of their physical and chemical aspects. The compositions, morphology and properties of these crystals were determined via energy dispersive spectroscopy (EDS), elemental analysis, scanning electron microscopy (SEM) and x-ray diffraction (XRD). Solubility tests were carried out to establish solubility curve for struvite from POME. Finally, crystal growth experiment was done applying reaction crystallization method to demonstrate struvite precipitation from POME. Results showed that high phosphorous (P) (24.85 wt%) and magnesium (Mg) (21.33 wt%) content was found in the struvite sample. Elemental analysis detected carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) below 4 wt%. The crystals analysed by XRD in this study were confirmed as struvite with 94.8% struvite mineral detected from its total volume. Having an orthorhombic crystal system, struvite crystals from POME recorded an average density of 1.701 g cm-3. Solubility curve of struvite from POME was established with maximum solubility of 275.6 mg L-1 at pH 3 and temperature 40 °C. Minimum solubility of 123.6 mg L-1 was recorded at pH 7 and temperature 25 °C. Crystal growth experiment utilizing POME as the source medium managed to achieve 67% reduction in phosphorous content. This study concluded that there is a potential of harnessing valuable nutrients from POME in the form of struvite. Struvite precipitation technology can be adapted in the management of POME in order to achieve maximum utilization of the nutrients that are still abundant in POME. At the same time maximization of nutrient extractions from POME will also reduce pollutants loading in the final discharge.
    Matched MeSH terms: Magnesium
  11. Zarei M, Qorbani M, Djalalinia S, Sulaiman N, Subashini T, Appanah G, et al.
    Int J Prev Med, 2021;12:8.
    PMID: 34084305 DOI: 10.4103/ijpvm.IJPVM_61_19
    Background: This review seeks to determine the relationship between food insecurity among elderly people over the past decades and nutrient deficiency, which is rather unclear. We aim to systematically review the relationship between food insecurity and dietary intake among elderly population.

    Methods: In this systematic review, we systematically searched the international databases including PubMed, Web of Sciences, and Scopus for scientifically related papers which have been published up until January 2018. For a more refined search, we used the Medical Subject Headings (MeSH) terms and Emtree. In terms of search protocol, no restrictions were placed on time and language. Two independent reviewers conducted the data refining processes. Validated form (PRISMA) was used to conduct quality assessment and data extraction.

    Results: Eight cross sectional studies have been included in this review. Two of the studies were conducted in Asia and the remaining six studies were largely based in the United States and Canada. Food insecurity was associated with low levels of vitamin and mineral intakes such as vitamins E, A, B, and D and also zinc, calcium, magnesium, and iron. Most studies also reported insufficient energy, and micro and macronutrients intake among elderly people.

    Conclusions: The findings of this review evidence a considerable amount of food insecurity and nutrient deficiency, including vitamins E, C, D, B 2, and B 12 and zinc, phosphorus, and calcium among elderly population. These findings could be used as reliable evidence by policy makers and future complementary analyses.

    Matched MeSH terms: Magnesium
  12. Mendel B, Christianto, Setiawan M, Prakoso R, Siagian SN
    Curr Cardiol Rev, 2021 Jun 03.
    PMID: 34082685 DOI: 10.2174/1573403X17666210603113430
    BACKGROUND: Junctional ectopic tachycardia (JET) is an arrhythmia originating from the AV junction, which may occur following congenital heart surgery, especially when the intervention is near the atrioventricular junction.

    OBJECTIVE: The aim of this systematic review and meta-analysis is to compare the effectiveness of amiodarone, dexmedetomidine and magnesium in preventing JET following congenital heart surgery.

    METHODS: This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement, where 11 electronic databases were searched from date of inception to August 2020. The incidence of JET was calculated with the relative risk of 95% confidence interval (CI). Quality assessment of the included studies was assessed using the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.

    RESULTS: Eleven studies met the predetermined inclusion criteria and were included in this meta-analysis. Amiodarone, dexmedetomidine and magnesium significantly reduced the incidence of postoperative JET [Amiodarone: risk ratio 0.34; I2= 0%; Z=3.66 (P=0.0002); 95% CI 0.19-0.60. Dexmedetomidine: risk ratio 0.34; I2= 0%; Z=4.77 (P<0.00001); 95% CI 0.21-0.52. Magnesium: risk ratio 0.50; I2= 24%; Z=5.08 (P<0.00001); 95% CI 0.39-0.66].

    CONCLUSION: All three drugs show promise in reducing the incidence of JET. Our systematic review found that dexmedetomidine is better in reducing the length of ICU stays as well as mortality. In addition, dexmedetomidine also has the least pronounced side effects among the three. However, it should be noted that this conclusion was derived from studies with small sample sizes. Therefore, dexmedetomidine may be considered as the drug of choice for preventing JET.

    Matched MeSH terms: Magnesium
  13. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Magnesium Oxide
  14. Suguna S, Shankar S, Jaganathan SK, Manikandan A
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1019-1026.
    PMID: 29448527 DOI: 10.1166/jnn.2018.13960
    Ni-doped cobalt aluminate NixCo1-xAl2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) spinel nanoparticles were successfully synthesized by a simple microwave combustion method using urea as the fuel and as well as reducing agent. X-ray powder diffraction (XRD) was confirmed the formation of single phase, cubic spinel cobalt-nickel aluminate structure without any other impurities. Average crystallite sizes of the samples were found to be in the range of 18.93 nm to 21.47 nm by Scherrer's formula. Fourier transform infrared (FT-IR) spectral analysis was confirmed the corresponding functional groups of the M-O, Al-O and M-Al-O (M = Co and Ni) bonds of spinel NixCo1-xAl2O4 structure. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images was confirmed the particle like nanostructured morphology. Energy band gap (Eg) value was calculated using UV-Visible diffuse reflectance spectra (DRS) and the Eg values increased with increasing Ni2+ dopant from x = 0.2 (3.58 eV) to x = 1.0 (4.15 eV). Vibrating sample magnetometer (VSM) measurements exposed that undoped and Ni-doped CoAl2O4 samples have superparamagnetic behavior and the magnetization (Ms) values were increased with increasing Ni2+ ions. Spinel NixCo1-xAl2O4 samples has been used for the catalytic oxidation of benzyl alcohol into benzaldehyde and was found that the sample Ni0.6Co0.4Al2O4 showed higher conversion 94.37% with 100% selectivity than other samples, which may be due to the smaller particle size and higher surface area.
    Matched MeSH terms: Magnesium Oxide
  15. Voon, H.C., Bhat, Rajeev, Karim, A.A., Rosma, A.
    MyJurnal
    Traditionally, in Chinese medicine, tree peony and apple flower buds are used to prepare herbal decoctions to cure various ailments. As both of these flowers are popular and used regularly, providing scientific evidence on their basic composition is a necessity. Hence, in the present study, we report the chemical composition of these two flower buds. Results revealed tree peony and apple flower buds to have high crude protein (15.73 and 26.30%), fibre (13.11 and 16.51%), and carbohydrate (57.84 and 40.63%) contents. Both the flowers had significant amounts of essential amino acids and unsaturated fatty acids. Essential minerals present in tree peony and apple flowers were potassium (1540.37 and 1125.60 mg/100 g), calcium (462.46 and 449.98 mg/100 g), magnesium (241.51 and 164.23 mg/100 g), sodium (12.75 and 20.06 mg/100 g), and phosphorus (420.00 and 590.00 mg/100 g), respectively. Heavy metals (cadmium, nickel, mercury, lead, and arsenic) were detected in trace amounts (< 0.50 mg/100 g) in both the flower buds. Results obtained indicate that both flowers could be exploited as an additional source of nutraceutical for the development of new functional foods.
    Matched MeSH terms: Magnesium
  16. Norhuzaimah, J., Liu, C. Y., Muhammad, M., Joanna Ooi ,S. M.
    MyJurnal
    During induction of general anaesthesia, the act of laryngoscopy and tracheal intubation stimulates the sympathetic
    nervous system resulting in an increase in blood pressure and heart rate which may be harmful especially in elderly
    patients with pre-existing ischaemic heart disease. Several drugs have therefore been used to obtund this increase
    including esmolol, nicardipine, magnesium sulphate and lignocaine. This prospective, double blind randomised
    clinical trial compared the efficacy of magnesium sulphate and esmolol in attenuating haemodynamic responses to
    laryngoscopy and tracheal intubation. One hundred and twenty six ASA I-II patients scheduled for elective surgery
    requiring general anaesthesia with tracheal intubation were enrolled and randomised into two groups: Group 1 (n =
    67) received MgSO4 40 mg/kg diluted in 100 ml normal saline administered over ten minutes, whereas Group 2 (n =
    59) received a bolus of esmolol 1.0 mg/kg diluted to 10 ml. Systolic and diastolic blood pressures and heart rate were
    recorded every minute for subsequent 10 minutes following laryngoscopy and tracheal intubation. Attenuation of the
    mean systolic and diastolic blood pressures following laryngoscopy and tracheal intubation was significantly larger
    in Group 2 compared to Group 1. Patients in Group 2 had significantly better suppression of heart rate response
    compared to Group 1 during the first four minutes after laryngoscopy and tracheal intubation (p
    Matched MeSH terms: Magnesium Sulfate
  17. Lee CYZ, Chakranon P, Lee SWH
    Front Pharmacol, 2019;10:1221.
    PMID: 31708771 DOI: 10.3389/fphar.2019.01221
    Context: Several interventions are available for the management of hypoxic ischemic encephalopathy (HIE), but no studies have compared their relative efficacy in a single analysis. This study aims to compare and determine the effectiveness of available interventions for HIE using direct and indirect data. Methods: Large randomized trials were identified from PubMed, EMBASE, CINAHL Plus, AMED, and Cochrane Library of Clinical Trials database from inception until June 30, 2018. Two independent reviewers extracted study data and performed quality assessment. Direct and network meta-analysis of randomized controlled trials was performed to obtained pooled results comparing the effectiveness of different therapies used in HIE on mortality, neurodevelopmental delay at 18 months, as well as adverse events. Their probability of having the highest efficacy and safety was estimated and ranked. The certainty of evidence for the primary outcomes of mortality and mortality or neurodevelopmental delay at 18 months was evaluated using GRADE criteria. Results: Fifteen studies comparing five interventions were included in the network meta-analysis. Whole body cooling [Odds ratio: 0.62 (95% credible interval: 0.46-0.83); 8 trials, high certainty of evidence] was the most effective treatment in reducing the risk of mortality, followed by selective head cooling (0.73; 0.48-1.11; 2 trials, moderate certainty of evidence) and use of magnesium sulfate (0.79; 0.20-3.06; 2 trials, low certainty of evidence). Whole body hypothermia (0.48; 0.33-0.71; 5 trials), selective head hypothermia (0.54; 0.32-0.89; 2 trials), and erythropoietin (0.36; 0.19-0.66; 2 trials) were more effective for reducing the risk of mortality and neurodevelopmental delay at 18 months (moderate to high certainty). Among neonates treated for HIE, the use of erythropoietin (0.36; 0.18-0.74, 2 trials) and whole body hypothermia (0.61; 0.45-0.83; 7 trials) were associated with lower rates of cerebral palsy. Similarly, there were lower rates of seizures among neonates treated with erythropoietin (0.35; 0.13-0.94; 1 trial) and whole body hypothermia (0.64; 0.46-0.87, 7 trials). Conclusion: The findings support current guidelines using therapeutic hypothermia in neonates with HIE. However, more trials are needed to determine the role of adjuvant therapy to hypothermia in reducing the risk of mortality and/or neurodevelopmental delay.
    Matched MeSH terms: Magnesium Sulfate
  18. Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH
    Nanomaterials (Basel), 2020 Apr 27;10(5).
    PMID: 32349272 DOI: 10.3390/nano10050834
    Breast cancer is the abnormal, uncontrollable proliferation of cells in the breast. Conventional treatment modalities like chemotherapy induce deteriorating side effects on healthy cells. Non-viral inorganic nanoparticles (NPs) confer exclusive characteristics, such as, stability, controllable shape and size, facile surface modification, and unique magnetic and optical properties which make them attractive drug carriers. Among them, carbonate apatite (CA) particles are pH-responsive in nature, enabling rapid intracellular drug release, but are typically heterogeneous with the tendency to self-aggregate. Here, we modified the nano-carrier by partially substituting Ca2+ with Mg2+ and Fe3+ into a basic lattice structure of CA, forming Fe/Mg-carbonate apatite (Fe/Mg-CA) NPs with the ability to mitigate self-aggregation, form unique protein corona in the presence of serum and efficiently deliver doxorubicin (DOX), an anti-cancer drug into breast cancer cells. Two formulations of Fe/Mg-CA NPs were generated by adding different concentrations of Fe3+ and Mg2+ along with a fixed amount of Ca2+ in bicarbonate buffered DMEM (Dulbecco's Modified Eagle's Medium), followed by 30 min incubation at 37 °C. Particles were characterized by turbidity analysis, z-average diameter and zeta potential measurement, optical microscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), flame atomic absorption spectroscopy (FAAS), pH dissolution, drug binding, cellular uptake, thiazolyl blue tetrazolium bromide (MTT) assay, stability analysis, and protein corona study by LCMS (Liquid chromatography-mass spectrometry). Both formulations of Fe/Mg-CA displayed mostly uniform nano-sized particles with less tendency to aggregate. The EDX and FAAS elemental analysis confirmed the weight (%) of Ca, Fe and Mg, along with their Ca/P ratio in the particles. A constant drug binding efficiency was noticed with 5 μM to 10 μM of initial DOX concentration. A pH dissolution study of Fe/Mg-CA NPs revealed the quick release of DOX in acidic pH. Enhancement of cytotoxicity for the chemotherapy drug was greater for Fe/Mg-CA NPs as compared to CA NPs, which could be explained by an increase in cellular internalization as a result of the small z-average diameter of the former. The protein corona study by LCMS demonstrated that Fe/Mg-CA NPs exhibited the highest affinity towards transport proteins without binding with opsonins. Biodistribution study was performed to study the effect of DOX-loaded Fe/Mg-CA NPs on the tissue distribution of DOX in Balb/c 4T1 tumor-bearing mice. Both formulations of Fe/Mg-CA NPs have significantly increased the accumulation of DOX in tumors. Interestingly, high Fe/Mg-CA NPs exhibited less off-target distribution compared to low Fe/Mg-CA NPs. Furthermore, the blood plasma analysis revealed prolonged blood circulation half-life of DOX-loaded low and high Fe/Mg-CA NPs compared to free DOX solution. Modifying CA NPs with Fe3+ and Mg2+, thereby, led to the generation of nano-sized particles with less tendency to aggregate, enhancing the drug binding efficiency, cellular uptake, and cytotoxicity without hampering drug release in acidic pH, while improving the circulation half-life and tumor accumulation of DOX. Therefore, Fe/Mg-CA which predominantly forms a transport protein-related protein corona could be a proficient carrier for therapeutic delivery in breast cancer.
    Matched MeSH terms: Magnesium
  19. Zakaria S, Mat-Husain SZ, Ying-Hwey K, Xin-Kai K, Mohd-Badawi A, Abd-Ghani NA, et al.
    Iran J Basic Med Sci, 2017 Dec;20(12):1360-1367.
    PMID: 29238472 DOI: 10.22038/IJBMS.2017.9610
    Objectives: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats.

    Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I) control group; (II) alcohol (3g/kg) + normal saline; (III) alcohol (3g/kg) + olive oil; (IV) alcohol (3g/kg) + alpha-tocopherol (60mg/kg) and (V) alcohol (3g/kg) + palm vitamin E (60mg/kg). The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar) and left tibia bones were harvested for bone mineral measurement.

    Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young's modulus) and bone minerals (bone calcium and magnesium) compared to control group (P<0.05). Palm vitamin E was able to improve bone biomechanical parameters by increasing the maximum force, ultimate stress and Young's modulus (P<0.05) while alpha-tocopherol was not able to. Both alpha-tocopherol and palm vitamin E were able to significantly increase tibia calcium and magnesium content while only alpha-tocopherol caused significant increase in lumbar calcium content (P<0.05).

    Conclusion: Both palm vitamin E and alpha-tocopherol improved bone mineral content which was reduced by alcohol. However, only palm vitamin E was able to improve bone strength in alcohol treated rats.

    Matched MeSH terms: Magnesium
  20. Thomas, R., Bhat, Rajeev, Kuang, Y.T.
    MyJurnal
    In this study, three popular, regionally grown rice varieties (Bario, brown and white) were compared with three of the most popular and highly marketed imported rice varieties (black, glutinous and basmati rice) in Penang region of Malaysia. Rice samples were evaluated for amino acids, fatty acids, minerals, heavy metals and dietary fiber composition. Overall, amino acids content among all the rice samples were comparable to each other. Results with regard to minerals showed potassium to be high in brown rice (197.41 mg/100g), while magnesium was recorded to be high in black rice (107.21 mg/100g). Heavy metals such as cadmium, nickel, mercury and lead, though present, they were in negligible amounts. Among all the rice varieties investigated, the total saturated fatty acid and unsaturated fatty acid content was highest in black rice (5.89%). The soluble dietary fiber was higher in white rice (16.39%), whereas insoluble dietary fiber was high in brown (16.51%) and black rice (14.49%), respectively. Results generated from this study is anticipated to benefit both the health wary consumers (based on their potential nutritional attributes) as well as the local food industries to choose the best rice variety while developing novel rice based food products.
    Matched MeSH terms: Magnesium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links