Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F
    Appl. Biochem. Biotechnol., 2017 Jun;182(2):653-668.
    PMID: 27995574 DOI: 10.1007/s12010-016-2352-9
    Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using (1)H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  2. Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al.
    Mar Drugs, 2018 May 07;16(5).
    PMID: 29735927 DOI: 10.3390/md16050154
    Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods
  3. Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    J Pharm Biomed Anal, 2018 Sep 05;158:438-450.
    PMID: 29957507 DOI: 10.1016/j.jpba.2018.06.038
    The present study sought to identify the key biomarkers and pathways involved in the induction of allergic sensitization to ovalbumin and to elucidate the potential anti-anaphylaxis property of Clinacanthus nutans (Burm. f.) Lindau water leaf extract, a Southeast Asia herb in an in vivo ovalbumin-induced active systemic anaphylaxis model evaluated by 1H-NMR metabolomics. The results revealed that carbohydrate metabolism (glucose, myo-inositol, galactarate) and lipid metabolism (glycerol, choline, sn-glycero-3-phosphocholine) are the key requisites for the induction of anaphylaxis reaction. Sensitized rats treated with 2000 mg/kg bw C. nutans extract before ovalbumin challenge showed a positive correlation with the normal group and was negatively related to the induced group. Further 1H-NMR analysis in complement with Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals the protective effect of C. nutans extract against ovalbumin-induced anaphylaxis through the down-regulation of lipid metabolism (choline, sn-glycero-3-phosphocholine), carbohydrate and signal transduction system (glucose, myo-inositol, galactarate) and up-regulation of citrate cycle intermediates (citrate, 2-oxoglutarate, succinate), propanoate metabolism (1,2-propanediol), amino acid metabolism (betaine, N,N-dimethylglycine, methylguanidine, valine) and nucleotide metabolism (malonate, allantoin). In summary, this study reports for the first time, C. nutans water extract is a potential anti-anaphylactic agent and 1H-NMR metabolomics is a great alternative analytical tool to explicate the mechanism of action of anaphylaxis.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  4. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  5. Nawaz M, Arayne MS, Sultana N, Abbas HF
    PMID: 25300038 DOI: 10.1016/j.saa.2014.08.152
    This work describes a RP-HPLC method for the determination and interaction studies of cefpirome with ACE-inhibitors (captopril, enalapril and lisinopril) in various buffers. The separation and interaction of cefpirome with ACE-inhibitors was achieved on a Purospher Star, C18 (5 μm, 250×4.6 mm) column. Mobile phase consisted of methanol: water (80:20, v/v, pH 3.3); however, for the separation of lisinopril, it was modified to methanol-water (40:60, v/v, pH 3.3) and pumped at a flow rate of 1 mL min(-1). In all cases, UV detection was performed at 225 nm. Interactions were carried out in physiological pH i.e., pH 1 (simulated gastric juice), 4 (simulated full stomach), 7.4 (blood pH) and 9 (simulated GI), drug contents were analyzed by reverse phase high performance liquid chromatography. Method was found linear in the concentration range of 1.0-50.0 μg mL(-1) with correlation coefficient (r(2)) of 0.999. Precision (RSD%) was less than 2.0%, indicating good precision of the method and accuracy was 98.0-100.0%. Furthermore, cefpirome-ACE-inhibitors' complexes were also synthesized and results were elucidated on the basis of FT-IR, and (1)H NMR. The interaction results show that these interactions are pH dependent and for the co-administration of cefpirome and ACE-inhibitors, a proper interval should be given.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  6. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Boo HC, Abdulkarim SM
    Food Chem, 2012 May 1;132(1):603-12.
    PMID: 26434338 DOI: 10.1016/j.foodchem.2011.10.095
    The main goal of the present work was to assess the mechanism of crystallisation, more precisely the dominant component responsible for primary crystal formations and fat agglomerations. Therefore, DSC results exhibited significant effect on temperature transition; peak sharpness and enthalpy at palm stearin (PS) levels more than 40wt.%. HPLC data demonstrated slight reduction in the content of POO/OPO at PS levels less than 40wt.%, while the excessive addition of PS more than 40wt.% increased significantly PPO/POP content. The pNMR results showed significant drop in SFC for blends containing PS less than 40wt.%, resulting in low SFC less than 15% at body temperature (37°C). Moreover, the values of viscosity (η) and shear stress (τ) at PS levels over 40wt.% expressed excellent internal friction of the admixtures. All the data reported indicate that PPO/POP was the major component of primary nucleus developed. In part, the levels of PS should be less than 40wt.%, if these blends are designed to be used for margarine production.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  7. Au A
    Adv Clin Chem, 2018 03 08;85:31-69.
    PMID: 29655461 DOI: 10.1016/bs.acc.2018.02.002
    Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  8. Ma NL, Teh KY, Lam SS, Kaben AM, Cha TS
    Bioresour. Technol., 2015 Aug;190:536-42.
    PMID: 25812996 DOI: 10.1016/j.biortech.2015.03.036
    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  9. Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z
    PLoS ONE, 2015;10(4):e0119654.
    PMID: 25849323 DOI: 10.1371/journal.pone.0119654
    Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  10. Islam MS, Al-Majid AM, Barakat A, Soliman SM, Ghabbour HA, Quah CK, et al.
    Molecules, 2015 May 07;20(5):8223-41.
    PMID: 25961163 DOI: 10.3390/molecules20058223
    This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  11. Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Park YS, Leontowicz H, et al.
    J Pharm Biomed Anal, 2017 May 10;138:80-91.
    PMID: 28189049 DOI: 10.1016/j.jpba.2017.01.046
    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of (1)H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  12. Prakash I, Bunders C, Devkota KP, Charan RD, Ramirez C, Snyder TM, et al.
    Molecules, 2014 Oct 28;19(11):17345-55.
    PMID: 25353385 DOI: 10.3390/molecules191117345
    To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage. We utilized 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY) and mass spectral data to fully characterize rebaudioside I.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  13. Pariyani R, Ismail IS, Azam A, Khatib A, Abas F, Shaari K, et al.
    J Pharm Biomed Anal, 2017 Feb 20;135:20-30.
    PMID: 27987392 DOI: 10.1016/j.jpba.2016.12.010
    Orthosiphon stamineus (OS) is a popular medicinal herb used in traditional Chinese medicine as a diuretic agent and for renal system disorders. This study employed 1H NMR based metabolomics approach to investigate the possible protective activity of OS in cisplatin induced nephrotoxicity owing to its diuretic and antioxidant activities. Aqueous (OSAE) and 50% aqueous ethanolic (OSFE) extracts of OS leaves were orally administered at 400mg/kg BW doses to rats which were then intraperitoneally injected with cisplatin at 5mg/kg BW dose. The 1H NMR profile of the urine samples collected on day 5 after cisplatin administration were analyzed by multivariate pattern recognition techniques, whereby 19 marker metabolites suggestive in the involvement of TCA cycle, disturbed energy metabolism, altered gut microflora and BCAA metabolism pathways were identified. It was observed that OSFE caused significant changes (p<0.05) in the levels of 8 markers namely leucine, acetate, hippurate, lysine, valine, 2-oxoglutarate, 3-HBT and acetoacetate resulting in a moderate ameliorative effect, however, it did not completely protect from nephrotoxicity. OSAE did not demonstrate significant down regulatory effects on any markers, albeit, it potentiated the cisplatin nephrotoxicity by inducing significant increase in glucose, glycine, creatinine, citrate, TMAO, acetate and creatine levels. A Principal Component Analysis (PCA) of the 1H NMR spectra of OS extracts identified that OSFE had higher concentrations of the secondary metabolites such as caffeic acid, chlorogenic acid, protocatechuic acid and orthosiphol, among others. Whereas, OSAE was characterized by higher concentrations of acetate, lactate, succinic acid, valine and phosphatidylcholine. This research denotes the first comprehensive analysis to identify the effects of OS extracts on cisplatin nephrotoxicity.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  14. Chan KL, Sugiyama H, Saito I, Hara M
    Phytochemistry, 1995 Nov;40(5):1373-4.
    PMID: 8534399
    The kapurimycin A3-guanine adduct was formed by alkylation of the antitumour antibiotic with d(CGCG)2. The site of alkylation of the guanine was confirmed by comparative NMR studies with N-7-methyl-guanine in DMSO-d6.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  15. Zainuddin N, Karpukhina N, Law RV, Hill RG
    Dent Mater, 2012 Oct;28(10):1051-8.
    PMID: 22841162 DOI: 10.1016/j.dental.2012.06.011
    The purpose of this study was to characterize commercial glass polyalkenoate cement (GPC) or glass ionomer cement (GIC), Glass Carbomer(®), which is designed to promote remineralization to fluorapatite (FAp) in the mouth. The setting reaction of the cement was followed using magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  16. Amin AM, Sheau Chin L, Teh CH, Mostafa H, Mohamed Noor DA, Sk Abdul Kader MA, et al.
    J Pharm Biomed Anal, 2017 Nov 30;146:135-146.
    PMID: 28873361 DOI: 10.1016/j.jpba.2017.08.018
    Clopidogrel high on treatment platelets reactivity (HTPR) has burdened achieving optimum therapeutic outcome. Although there are known genetic and non-genetic factors associated with clopidogrel HTPR, which explain in part clopidogrel HTPR, yet, great portion remains unknown, often hindering personalizing antiplatelet therapy. Nuclear magnetic resonance (1H NMR) pharmacometabolomics analysis is useful technique to phenotype drug response. We investigated using 1H NMR analysis to phenotype clopidogrel HTPR in urine. Urine samples were collected from 71 coronary artery disease (CAD) patients who were planned for interventional angiographic procedure prior to taking 600mg clopidogrel loading dose (LD) and 6h post LD. Patients' platelets function testing was assessed with the VerifyNow® P2Y12 assay at 6h after LD. Urine samples were analysed using 1H NMR. Multivariate statistical analysis was used to identify metabolites associated with clopidogrel HTPR. In pre-dose samples, 16 metabolites were associated with clopidogrel HTPR. However, 18 metabolites were associated with clopidogrel HTPR in post-dose samples. The pathway analysis of the identified biomarkers reflected that multifactorial conditions are associated with clopidogrel HTPR. It also revealed the implicated role of gut microbiota in clopidogrel HTPR. Pharmacometabolomics not only discovered novel biomarkers of clopidogrel HTPR but also revealed implicated pathways and conditions.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods
  17. Mostafa H, Amin AM, Teh CH, Murugaiyah V, Arif NH, Ibrahim B
    Drug Alcohol Depend, 2016 12 01;169:80-84.
    PMID: 27788404 DOI: 10.1016/j.drugalcdep.2016.10.016
    BACKGROUND: Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD.

    OBJECTIVES: To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics.

    METHOD: Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC).

    RESULTS: The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSION: This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy.

    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
  18. Mostafa H, Amin AM, Teh CH, Murugaiyah VA, Arif NH, Ibrahim B
    J Subst Abuse Treat, 2017 06;77:1-5.
    PMID: 28476260 DOI: 10.1016/j.jsat.2017.02.015
    BACKGROUND: Alcohol use disorders (AUD) is a phase of alcohol misuse in which the drinker consumes excessive amount of alcohol and have a continuous urge to consume alcohol which may lead to various health complications. The current methods of alcohol use disorders diagnosis such as questionnaires and some biomarkers lack specificity and sensitivity. Metabolomics is a novel scientific field which may provide a novel method for the diagnosis of AUD by using a sensitive and specific technique such as nuclear magnetic resonance (NMR).

    METHODS: A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups.

    RESULTS: The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSIONS: The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.

    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  19. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al.
    BMC Med, 2015 Sep 23;13:242.
    PMID: 26399231 DOI: 10.1186/s12916-015-0462-9
    BACKGROUND: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers.

    METHODS: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.

    RESULTS: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.

    CONCLUSION: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.

    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
  20. Sim YL, Ariffin A, Khan MN
    J. Org. Chem., 2008 May 16;73(10):3730-7.
    PMID: 18410141 DOI: 10.1021/jo702695k
    The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links