Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Abd Ali LI, Ibrahim WA, Sulaiman A, Kamboh MA, Sanagi MM
    Talanta, 2016 Feb 1;148:191-9.
    PMID: 26653440 DOI: 10.1016/j.talanta.2015.10.062
    This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).
    Matched MeSH terms: Magnetics
  2. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Magnetics*
  3. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Magnetics
  4. Abdul Aziz SA, Mazlan SA, Ubaidillah U, Shabdin MK, Yunus NA, Nordin NA, et al.
    Materials (Basel), 2019 Oct 28;12(21).
    PMID: 31661837 DOI: 10.3390/ma12213531
    Carbon-based particles, such as graphite and graphene, have been widely used as a filler in magnetorheological elastomer (MRE) fabrication in order to obtain electrical properties of the material. However, these kinds of fillers normally require a very high concentration of particles to enhance the conductivity property. Therefore, in this study, the nanosized Ni-Mg cobalt ferrite is introduced as a filler to soften MRE and, at the same time, improve magnetic, rheological, and conductivity properties. Three types of MRE samples without and with different compositions of Mg, namely Co0.5Ni0.2Mg0.3Fe2O4 (A1) and Co0.5Ni0.1Mg0.4Fe2O4 (A2), are fabricated. The characterization related to the micrograph, magnetic, and rheological properties of the MRE samples are analyzed using scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and the rheometer. Meanwhile, the effect of the nanosized Ni-Mg cobalt ferrites on the electrical resistance property is investigated and compared with the different Mg compositions. It is shown that the storage modulus of the MRE sample with the nanosized Ni-Mg cobalt ferrites is 43% higher than that of the MRE sample without the nanomaterials. In addition, it is demonstrated that MREs with the nanosized Ni-Mg cobalt ferrites exhibit relatively low electrical resistance at the on-state as compared to the off-state condition, because MRE with a higher Mg composition shows lower electrical resistance when higher current flow occurs through the materials. This salient property of the proposed MRE can be effectively and potentially used as an actuator to control the viscoelastic property of the magnetic field or sensors to measure the strain of the flexible structures by the electrical resistance signal.
    Matched MeSH terms: Magnetics
  5. Abdulhussein AQ, Jamil AKM, Bakar NKA
    Food Chem, 2021 Oct 15;359:129936.
    PMID: 33957328 DOI: 10.1016/j.foodchem.2021.129936
    In this work, new selective and sensitive dual-template molecularly imprinted polymer nanoparticles (MIPs) were synthesized and characterized. Sorbent MIPs were investigated for simultaneous extraction and clean-up of thiamethoxam and thiacloprid from light and dark honey samples. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry triple-quadrupole (UHPLC-MS/MS) (QQQ) was used to detect and quantify the pesticides. The kinetic model with adsorption kinetics of sorbent was investigated. The optimal adsorption conditions were 80 mg of polymer MIPs, a 30-min extraction time, and a pH of 7. The detection limit (LOD) and the quantification limit (LOQ) varied from 0.045 to 0.070 µg kg-1 and from 0.07 to 0.10 µg kg-1, respectively. The intra-day and inter-day precision (RSD, %) ranged from 1.3 to 2.0% and from 8.2 to 12.0%, respectively. The recovery of thiamethoxam and thiacloprid ranged from 96.8 to 106.5% and 95.3 to 104.4%, respectively, in light and dark honey samples.
    Matched MeSH terms: Magnetics
  6. Ahmad H, Haseen U, Umar K, Ansari MS, Ibrahim MNM
    Mikrochim Acta, 2019 08 27;186(9):649.
    PMID: 31456042 DOI: 10.1007/s00604-019-3753-6
    The authors describe a method for solvent-free mechano-chemical synthesis of a bioinspired sorbent. A 2D ultra-thin carbon sheet similar to graphene oxide was prepared using a natural waste (onion sheet). The formation of 2D carbon sheets was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and ATR-IR. The surface morphology was characterized by field emission scanning electron microscopy and high-resolution tunneling electron microscopy. The carbon sheets were decorated with crystalline MnFe2O4 nanoparticles by solid-state reaction at room temperature. The presence of magnetic particles in the final product was confirmed by vibrating sample magnetometry and electron microscopy. The synergistic effect of carbon sheets and MnFe2O4 led to an enhanced sorption of arsenic species compared to bare carbon sheets or to MnFe2O4 nanoparticles. A column was prepared for the simultaneous preconcentration and determination of trace levels of As(III) and As(V) from water samples. The preconcentration factors are between 900 and 833 for As(III) and As(V) species, respectively. The linearity of the calibration plot ranges from 0.4-10 ng mL-1. The detection limits (at 3σ) for both As(III) and As(V) are 30 pg mL-1. The Student's t values for the analysis of spiked samples are lower than the critical Student's t values at a 95% confidence level. The recoveries from spiked water samples range between 99 and 102.8%. Graphical abstract Schematic representation of the preparation of carbon sheets similar to graphene oxide from onion sheaths after pyrolysis at 800 °C. The prepared carbon sheet-MnFe2O4 composite shows excellent arsenic sorption and preconcentration down to the pg mL-1 concentration.
    Matched MeSH terms: Magnetics
  7. Baiuitiar Ul Haq, Ahmed R, Shaari A, Afaq A, Hussain R
    Sains Malaysiana, 2014;43:813-817.
    The central theme of nanotechnology to miniaturize devices has stimulated interest in diluted magnetic semiconductors (DMS). DMS that simultaneously exhibit magnetic and semiconducting behavior are capable of parting properties of two different function devices into one. In this research we present our first principles investigations related to the structural and electronic properties of, Cr doped zinc-blende (zB) ZnO, DMS. These calculations are carried out using full potential linearized augmented plane wave plus local orbital (FP-L(APW+lo)) with generalized gradient approximations approach as implemented in WIEN2k code. In this study, the effect of Cr doping on lattice parameters, spin polarized electronic band structure, density of states (Dos) of ZnO is presented and analyzed in detail.
    Matched MeSH terms: Magnetics
  8. Banihashemian SM, Periasamy V, Boon Tong G, Abdul Rahman S
    PLoS One, 2016;11(3):e0149488.
    PMID: 26999445 DOI: 10.1371/journal.pone.0149488
    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.
    Matched MeSH terms: Magnetics*
  9. Beh SY, Md Saleh N, Asman S
    Anal Methods, 2021 02 07;13(5):607-619.
    PMID: 33480366 DOI: 10.1039/d0ay02166k
    The usage of phenols in the marketplace has been increasing tremendously, which has raised concerns about their toxicity and potential effect as emerging pollutants. Phenol's structure has closely bonded phenyl and hydroxy groups, thereby making its functional characteristics closely similar to that of alcohol. As a result, phenol is used as a base compound for commercial home-based products. Hence, a simple and efficient procedure is required to determine the low concentration of phenols in environmental water samples. In this research, a method of combining magnetic nanoparticles (MNPs) with surfactant Sylgard 309 was developed to overcome the drawbacks in the classical extraction methods. In addition, this developed method improved the performance of extraction when MNPs and the surfactant Sylgard 309 were used separately, as reported in the previous research. This MNP-Sylgard 309 was synthesised by the coprecipitation method and attracts phenolic compounds in environmental water samples. Response surface methodology was used to study the parameters and responses in order to obtain an optimised condition using MNP-Sylgard 309. The parameters included the effect of pH, extraction time, and concentration of the analyte. Meanwhile, the responses measured were the peak area of the chromatogram and the percentage recovery. From this study, the results of the optimum conditions for extraction using MNP-Sylgard 309 were pH 7, extraction time of 20 min, and analyte concentration of 10.0 μg mL-1. Under the optimized conditions, MNP-Sylgard 309 showed a low limit of detection of 0.665 μg mL-1 and the limit of quantification was about 2.219 μg mL-1. MNP-Sylgard 309 was successfully applied on environmental water samples such as lake and river water. High recovery (76.23%-110.23%) was obtained.
    Matched MeSH terms: Magnetics
  10. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Magnetics
  11. Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M
    Food Chem, 2019 Apr 25;278:322-332.
    PMID: 30583379 DOI: 10.1016/j.foodchem.2018.10.145
    Poly(β-cyclodextrin functionalized ionic liquid) immobilized magnetic nanoparticles (Fe3O4@βCD-Vinyl-TDI) as sorbent in magnetic µ-SPE was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in rice samples coupled with gas chromatographic-flame ionization detector (GC-FID). The nanocomposite was characterized by various tools and significant parameters that affected the extraction efficiency of PAHs were investigated. The calibration curves were linear for the concentration ranging between 0.1 and 500 μg kg-1 with correlation determinations (R2) from 0.9970 to 0.9982 for all analytes. Detection limits ranged at 0.01-0.18 μg kg-1 in real matrix. The RSD values ranged at 2.95%-5.34% (intra-day) and 4.37%-7.05% (inter-day) precision for six varied days. The sorbents showed satisfactory reproducibility in 2.9% to 9.9% range and acceptable recovery values at 80.4%-112.4% were obtained for the real sample analysis. The optimized method was successfully applied to access content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia.
    Matched MeSH terms: Magnetics
  12. Boukhalfa N, Boutahala M, Djebri N, Idris A
    Int J Biol Macromol, 2019 Feb 15;123:539-548.
    PMID: 30447356 DOI: 10.1016/j.ijbiomac.2018.11.102
    Magnetic beads (AO-γ-Fe2O3) of alginate (A) impregnated with citrate coated maghemite nanoparticles (γ-Fe2O3) and oxidized multiwalled carbon nanotubes (OMWCNTs) were synthesized and used as adsorbent for the removal of methylene blue from water. The XRD analysis revealed that the diameter of γ-Fe2O3 is 10.24 nm. The mass saturation magnetization of AO-γ-Fe2O3 and γ-Fe2O3 were found to be 27.16 and 42.63 emu·g-1, respectively. The adsorption studies revealed that the data of MB isotherm were well fitted to the Freundlich model. The Langmuir isotherm model exhibited a maximum adsorption capacity of 905.5 mg·g-1. The adsorption was very dependent on initial concentration, adsorbent dose, and temperature. The beads exhibited high adsorption stability in large domain of pH (4-10). The thermodynamic parameters determined at 283, 293, 303, and 313 K revealed that the adsorption occurring was spontaneous and endothermic in nature. Adsorption kinetic data followed the intraparticle diffusion model. The AO-γ-Fe2O3 beads were used for six cycles without significant adsorptive performance loss. Therefore, the eco-friendly prepared AO-γ-Fe2O3 beads were considered as highly recyclable and efficient adsorbent for methylene blue as they can be easily separated from water after treatment.
    Matched MeSH terms: Magnetics
  13. Cheung JPY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC
    Spine (Phila Pa 1976), 2018 04 01;43(7):E399-E405.
    PMID: 28767632 DOI: 10.1097/BRS.0000000000002358
    STUDY DESIGN: Prospective study.

    OBJECTIVE: To identify the factors that are associated with rod slippage and to study the pattern of achieved length gain with a standard distraction methodology.

    SUMMARY OF BACKGROUND DATA: Ability to achieve successful magnetically controlled growing rod (MCGR) distraction is crucial for gradual spine lengthening. Rod slippage has been described as a failure of internal magnet rotation leading to a slippage and an inability to distract the rod. However, its onset, significance, and risk factors are currently unknown. In addition, how this phenomenon pertains to actual distracted lengths is also unknown.

    METHODS: A total of 22 patients with MCGR and at least six distraction episodes were prospectively studied. Patients with rod slippage occurring less than six distraction episodes were considered early rod slippage whereas those with more than six episodes or have yet to slip were grouped as late rod slippage. The association of parameters including body habitus, maturity status, age of implantation, total number of distractions, months of distraction from initial implantation, initial and postoperative Cobb angle, T1-T12, T1-S1, T5-T12 kyphosis, curve flexibility, instrumented length, and distance between magnets in dual rods and between the magnets and apex of the curve with early or late onset of rod slippage were studied. Differences between expected and achieved distraction lengths were assessed with reference to rod slippage episodes and rod exchanges to determine any patterns of diminishing returns.

    RESULTS: Patients had mean age of 7.1 years at diagnosis with mean follow-up of 49.8 months. A mean 32.4 distractions were performed per patient. Early rod slippage occurred in 14 patients and late rod slippage occurred in eight patients. Increased height, weight, body mass index, older age, increased T1-12 and T1-S1 lengths, and less distance between magnets were significantly associated with early rod slippage. Expected distraction lengths did not translate to achieve distraction lengths and reduced gains were only observed after achieving one-third of the allowable distracted length in the MCGR. Length gains return to baseline after rod exchange.

    CONCLUSION: This is the first study to specifically analyze the impact of rod slippage on distraction lengths and the risk factors associated with its onset and frequency. Increased body habitus and reduced distance between internal magnets significantly influenced rod slippage events. Diminishing returns in distracted length gains were only observed after a period of usage.

    LEVEL OF EVIDENCE: 3.

    Matched MeSH terms: Magnetics*
  14. Chia CH, Sarani Zakaria, Farahiyan R, Liew TK, Nguyen KL, Mustaffa Abdullah, et al.
    Sains Malaysiana, 2008;37:233-237.
    Magnetite (Fe3O4) nanoparticles have been synthesized using the chemical coprecipitation method. The Fe3O4 nanoparticles were likely formed via dissolution-recrystallization process. During the precipitation process, ferrihydrite and Fe(OH)2 particles formed aggregates and followed by the formation of spherical Fe3O4 particles. The synthesized Fe3O4 nanoparticles exhibited superparamagnetic behavior and in single crystal form. The synthesis temperature and the degree of agitation during the precipitation were found to be decisive in controlling the crystallite and particle size of the produced Fe3O4 nanoparticles. Lower temperature and higher degree of agitation were the favorable conditions for producing smaller particle. The magnetic properties (saturation magnetization and coercivity) of the Fe3O4 nanoparticles increased with the particle size.
    Matched MeSH terms: Magnetics
  15. Chiu W, Too S, Daud S, Rashid N, Chia M, Rahman S, et al.
    Sains Malaysiana, 2014;43:941-945.
    In the present study, we report the size distribution study on the iron oxide (Fe304) magnetic nanocrystals (Ncs), which have been synthesized by using green chemistry approach with palm-oil based carboxylic compound (oleic acid) as capping ligands . The Fe304 Ncs were prepared by one pot reaction under non-hydrolytic approach. With the assistance of oleic acid that plays the role as effective capping-ligands , we showed that the Fe304 NCs that are highly monodispersed in size and shape can be synthesized by scrupulously controlling the reaction time. The diameter of Fe304 Ncs can be tuned within the range of 4.0-18.0 nm and exhibit very uniform morphology, which are spherical in shape. Current synthetic approach offers a cheap, environmentally benign and excellent repeatability route in large-scale production of high-quality magnetic Fe304 Ncs if compared to the preceding reports.
    Matched MeSH terms: Magnetics
  16. Chong WH, Leong SS, Lim J
    Electrophoresis, 2021 11;42(21-22):2303-2328.
    PMID: 34213767 DOI: 10.1002/elps.202100081
    Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
    Matched MeSH terms: Magnetics*
  17. Dasan YK, Guan BH, Zahari MH, Chuan LK
    PLoS One, 2017;12(1):e0170075.
    PMID: 28081257 DOI: 10.1371/journal.pone.0170075
    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.
    Matched MeSH terms: Magnetics
  18. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Mol Sci, 2013;14(12):23639-53.
    PMID: 24300098 DOI: 10.3390/ijms141223639
    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
    Matched MeSH terms: Magnetics
  19. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G
    Sci Rep, 2020 Dec 09;10(1):21521.
    PMID: 33298980 DOI: 10.1038/s41598-020-76504-5
    The use of nanocarriers composed of polyethylene glycol- and polyvinyl alcohol-coated vesicles encapsulating active molecules in place of conventional chemotherapy drugs can reduce many of the chemotherapy-associated challenges because of the increased drug concentration at the diseased area in the body. The present study investigated the structure and magnetic properties of iron oxide nanoparticles in the presence of polyvinyl alcohol and polyethylene glycol as the basic surface coating agents. We used superparamagnetic iron oxide nanoparticles (FNPs) as the core and studied their effectiveness when two polymers, namely polyvinyl alcohol (PVA) and polyethylene glycol (PEG), were used as the coating agents together with magnesium-aluminum-layered double hydroxide (MLDH) as the nanocarrier. In addition, the anticancer drug sorafenib (SO), was loaded on MLDH and coated onto the surface of the nanoparticles, to best exploit this nano-drug delivery system for biomedical applications. Samples were prepared by the co-precipitation method, and the resulting formation of the nanoparticles was confirmed by X-ray, FTIR, TEM, SEM, DLS, HPLC, UV-Vis, TGA and VSM. The X-ray diffraction results indicated that all the as-synthesized samples contained highly crystalline and pure Fe3O4. Transmission electron microscopy analysis showed that the shape of FPEGSO-MLDH nanoparticles was generally spherical, with a mean diameter of 17 nm, compared to 19 nm for FPVASO-MLDH. Fourier transform infrared spectroscopy confirmed the presence of nanocarriers with polymer-coating on the surface of iron oxide nanoparticles and the existence of loaded active drug consisting of sorafenib. Thermogravimetric analyses demonstrated the thermal stability of the nanoparticles, which displayed enhanced anticancer effect after coating. Vibrating sample magnetometer (VSM) curves of both produced samples showed superparamagnetic behavior with the high saturation magnetization of 57 emu/g for FPEGSO-MLDH and 49 emu/g for FPVASO-MLDH. The scanning electron microscopy (SEM) images showed a narrow size distribution of both final samples. The SO drug loading and the release behavior from FPEGSO-MLDH and FPVASO-MLDH were assessed by ultraviolet-visible spectroscopy. This evaluation showed around 85% drug release within 72 h, while 74% of sorafenib was released in phosphate buffer solution at pH 4.8. The release profiles of sorafenib from the two designed samples were found to be sustained according to pseudo-second-order kinetics. The cytotoxicity studies confirmed the anti-cancer activity of the coated nanoparticles loaded with SO against liver cancer cells, HepG2. Conversely, the drug delivery system was less toxic than the pure drug towards fibroblast-type 3T3 cells.
    Matched MeSH terms: Magnetics
  20. Eshraghi A, Abu Osman NA, Karimi MT, Gholizadeh H, Ali S, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Dec;91(12):1028-38.
    PMID: 23168378 DOI: 10.1097/PHM.0b013e318269d82a
    The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
    Matched MeSH terms: Magnetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links