Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Cho SJ, Lee J, Lee HJ, Jo HY, Sinniah M, Kim HY, et al.
    Int J Biol Sci, 2016;12(7):824-35.
    PMID: 27313496 DOI: 10.7150/ijbs.14408
    Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
    Matched MeSH terms: Malaria/transmission
  2. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Malaria/transmission*
  3. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Malaria/transmission*
  4. Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al.
    PLoS Pathog, 2015 May;11(5):e1004888.
    PMID: 26020959 DOI: 10.1371/journal.ppat.1004888
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.
    Matched MeSH terms: Malaria/transmission
  5. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Malaria/transmission
  6. Hii JL, Kan S, Vun YS, Chin KF, Lye MS, Mak JW, et al.
    Trans R Soc Trop Med Hyg, 1985;79(5):677-80.
    PMID: 3913069
    Seven villages in Banggi Island, Sabah, Malaysia, were surveyed four times to evaluate the roles of local mosquitoes as vectors of malaria and Bancroftian filariasis. 11 species of Anopheles were found biting man. 53.9% of the anophelines caught were An. flavirostris, 27.1% An. balabacensis, 6% An. donaldi and 4.2% An. subpictus. Infective malaria sporozoites, probably of human origin, were found in two of 336 An. flavirostris and 12 of 308 An. balabacensis. Sporozoites, probably of a non-human Plasmodium, were found in An. umbrosus. Nine of 1001 An. flavirostris and four of 365 An. balabacensis harboured L2 or L3 filarial larvae identified as those of Wuchereria bancrofti. This is the first record of An. flavirostris as a natural vector of malaria and W. bancrofti in Sabah.
    Matched MeSH terms: Malaria/transmission*
  7. Wharton RH, Eyles DE
    Science, 1961 Jul 28;134(3474):279-80.
    PMID: 13784726 DOI: 10.1126/science.134.3474.279
    Anopheles hackeri, a mosquito commonly found breeding in nipa palm leaf bases along the Malayan coast, was demonstrated to be infected with Plasmodium knowlesi by the inoculation of sporozoites into an uninfected rhesus monkey. This was the first demonstration of a natural vector of any monkey malaria.
    Matched MeSH terms: Malaria/transmission*
  8. Wharton RH, Eyles DE, Warren M, Moorhouse DE
    Science, 1962 Sep 7;137(3532):758.
    PMID: 14006429 DOI: 10.1126/science.137.3532.758
    Anopheles leucosphyrus, an important vector of human malaria in Sarawak, Borneo, was shown to be infected with Plasmodium inui in Malaya by the inoculation of sporozoites into an uninfected rhesus monkey. The mosquito was caught while biting a man, thus demonstrating that it would be possible for a monkey infection to be transmitted to man in nature.
    Matched MeSH terms: Malaria/transmission*
  9. Syafruddin D, Lestari YE, Permana DH, Asih PBS, St Laurent B, Zubaidah S, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008385.
    PMID: 32614914 DOI: 10.1371/journal.pntd.0008385
    Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
    Matched MeSH terms: Malaria/transmission*
  10. REID JA, WEITZ B
    Ann Trop Med Parasitol, 1961 Jul;55:180-6.
    PMID: 13740488
    Matched MeSH terms: Malaria/transmission*
  11. Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M
    World J Microbiol Biotechnol, 2021 Jul 09;37(8):131.
    PMID: 34240263 DOI: 10.1007/s11274-021-03097-0
    Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
    Matched MeSH terms: Malaria/transmission
  12. Singh RK, Haq S, Kumar G, Dhiman RC
    J Commun Dis, 2013 Mar-Jun;45(1-2):1-16.
    PMID: 25141549
    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
    Matched MeSH terms: Malaria/transmission*
  13. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Malaria/transmission
  14. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
    Matched MeSH terms: Malaria/transmission
  15. Chiang GL, Loong KP, Chan ST, Eng KL, Yap HH
    PMID: 1687932
    Mark-release-recapture experiments were undertaken in January 1989, in Pos Betau, Pahang, Malaysia, with the malaria vector Anopheles maculatus. On two consecutive nights, 121 and 175 blood-fed mosquitos were released. A mean recapture rate of 11.5% and survival rates of 0.699-0.705 with an estimated oviposition cycle period of 2.35 days were obtained from the releases. About 68% of all recaptures were taken within a distance of 0.5 km from their release points and the longest detected flight was 1.6 km. No heterogeneity was found between indoor and outdoor biters of An. maculatus.
    Matched MeSH terms: Malaria/transmission*
  16. Chang MS, Hii J, Buttner P, Mansoor F
    Trans R Soc Trop Med Hyg, 1997 7 1;91(4):382-6.
    PMID: 9373626
    Surveys were conducted of adult and immature mosquitoes in an area undergoing oil palm development in north Sarawak. Point prevalence data from 2 sites were collected annually, coinciding with annual phases of forest clearing, burning/cultivation, and maintenance. Major habitat perturbation during the forest/clearing transition shifted the major mosquito faunal equilibrium in terms of species composition, relative density and occurrence. Analyses of variance showed that the mean numbers of 4 species of Anopheles decreased significantly after forest clearing. Relative densities of immature stages decreased after forest clearing, but A. letifer and Culex tritaeniorhynchus remained relatively unchanged after the second year. Comparisons with the pre-development forest stage showed that the reductions in person-biting rates, adult survival and combined entomological inoculation rates (EIR) of A. donaldi and A. letifer decreased the risk of malaria transmission by 90% over the 4 years period. Concomitant reductions in EIR and annual malaria incidence were also correlated. This study highlighted the 'law of unintended consequences', since 2 contrasting effects were observed: reduction of malaria vectors but concomitant increase of dengue vectors.
    Matched MeSH terms: Malaria/transmission
  17. Hassan AA, Rahman WA, Rashid MZ, Shahrem MR, Adanan CR
    J Vector Ecol, 2001 Jun;26(1):70-5.
    PMID: 11469187
    Nine species of Anopheles mosquitoes were collected biting humans indoors and outdoors in a malaria endemic village in northern Peninsular Malaysia. Outdoor biting was higher than that observed indoors. Biting of An. maculatus was observed throughout the night. Peak indoor biting occurred at 2130 h while outdoor biting was higher after midnight. Outdoor biting of Anopheles barbirostris and An. sinensis was observed throughout the night with several peaks after the second half of the night. Outdoor biting activities of An. kochi and An. philippinensis were primarily active after dusk and steadily declined after 2130 h.
    Matched MeSH terms: Malaria/transmission
  18. Vythilingam I, Wong ML, Wan-Yussof WS
    Parasitology, 2018 01;145(1):32-40.
    PMID: 27222102 DOI: 10.1017/S0031182016000901
    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.
    Matched MeSH terms: Malaria/transmission*
  19. Baimai V, Harbach RE, Sukowati S
    J Am Mosq Control Assoc, 1988 Mar;4(1):44-50.
    PMID: 3193098
    Karyotypes and crossing relationships were investigated for three allopatric populations of Anopheles leucosphyrus in Southeast Asia: South Kalimantan, Sumatra and Thailand. The mitotic karyotypes of these populations were similar to those previously observed in other species of the An. leucosphyrus group. Populations from Thailand and South Kalimantan exhibited telocentric and subtelocentric sex chromosomes, respectively, with a distinctive band of intercalary heterochromatin in the X chromosome. Strikingly different submetacentric X and Y chromosomes were observed in the population from Sumatra, and it seems likely that the evolution of these chromosomes occurred through the acquisition of constitutive heterochromatin. Sterile F1 males were observed in crosses between the Sumatra population and the populations from South Kalimantan and Thailand. No genetic incompatibility was observed in crosses between the latter two populations. We believe that the present concept of An. leucosphyrus includes two allopatric species, one inhabiting Borneo, West Malaysia and southern Thailand and one confined to Sumatra.
    Matched MeSH terms: Malaria/transmission*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links