Displaying publications 1 - 20 of 145 in total

Abstract:
Sort:
  1. Yue S, Brodie JF, Zipkin EF, Bernard H
    Ecol Appl, 2015 Dec;25(8):2285-92.
    PMID: 26910955
    Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems.
    Matched MeSH terms: Mammals/classification*
  2. Yousif AA, Bin Bahari I, Yasir MS
    Curr Radiopharm, 2012 Jan;5(1):34-7.
    PMID: 21864247
    Inactivation constant for V79 cells has been extracted from radiobiology experiments that utilize charged particles to irradiate mammal cells in vitro. Physical parameters such as effective charge, radiation mean free path and linear ionization which characterized protons and heluim-4 particles are determined using of standard values. The relationship between inactivation constant α and physical quality parameters have been determined, in this research, for protons and heluim-4 particles. This approach allows getting the characteristic biological response of inactivation of V79 cells in terms of each selected physical quality parameter. The best regression models are formulated for each obtained relationship.
    Matched MeSH terms: Mammals
  3. Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, et al.
    Gut Microbes, 2023 Dec;15(2):2283911.
    PMID: 38010368 DOI: 10.1080/19490976.2023.2283911
    The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
    Matched MeSH terms: Mammals
  4. Yang P, Chen Y, Huang Z, Xia H, Cheng L, Wu H, et al.
    Elife, 2022 Oct 06;11.
    PMID: 36200862 DOI: 10.7554/eLife.80127
    Despite the importance of innate immunity in invertebrates, the diversity and function of innate immune cells in invertebrates are largely unknown. Using single-cell RNA-seq, we identified prohemocytes, monocytic hemocytes, and granulocytes as the three major cell-types in the white shrimp hemolymph. Our results identified a novel macrophage-like subset called monocytic hemocytes 2 (MH2) defined by the expression of certain marker genes, including Nlrp3 and Casp1. This subtype of shrimp hemocytes is phagocytic and expresses markers that indicate some conservation with mammalian macrophages. Combined, our work resolves the heterogenicity of hemocytes in a very economically important aquatic species and identifies a novel innate immune cell subset that is likely a critical player in the immune responses of shrimp to threatening infectious diseases affecting this industry.
    Matched MeSH terms: Mammals/genetics
  5. Wong YC, Ng AWR, Chen Q, Liew PS, Lee CW, Sim EUH, et al.
    ACS Synth Biol, 2023 Apr 21;12(4):909-921.
    PMID: 37026178 DOI: 10.1021/acssynbio.2c00580
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.
    Matched MeSH terms: Mammals/genetics
  6. Wong CED, Hua K, Monis S, Norazit A, Noor SM, Ekker M
    Brain Sci, 2020 May 11;10(5).
    PMID: 32403347 DOI: 10.3390/brainsci10050286
    Glial cell line-derived neurotrophic factor (GDNF) was initially described as important for dopaminergic neuronal survival and is involved in many other essential functions in the central nervous system. Characterization of GDNF phenotype in mammals is well described; however, studies in non-mammalian vertebrate models are scarce. Here, we characterized the anatomical distribution of gdnf-expressing cells in adult zebrafish brain by means of combined in situ hybridization (ISH) and immunohistochemistry. Our results revealed that gdnf was widely dispersed in the brain. gdnf transcripts were co-localized with radial glial cells along the ventricular area of the telencephalon and in the hypothalamus. Interestingly, Sox2 positive cells expressed gdnf in the neuronal layer but not in the ventricular zone of the telencephalon. A subset of GABAergic precursor cells labeled with dlx6a-1.4kbdlx5a/6a: green fluorescence protein (GFP) in the pallium, parvocellular preoptic nucleus, and the anterior and dorsal zones of the periventricular hypothalamus also showed expression with gdnf mRNA. In addition, gdnf signals were detected in subsets of dopaminergic neurons, including those in the ventral diencephalon, similar to what is seen in mammalian brain. Our work extends our knowledge of gdnf action sites and suggests a potential role for gdnf in adult brain neurogenesis and regeneration.
    Matched MeSH terms: Mammals
  7. Williams PJ, Ong RC, Brodie JF, Luskin MS
    Nat Commun, 2021 Mar 12;12(1):1650.
    PMID: 33712621 DOI: 10.1038/s41467-021-21978-8
    Overhunting reduces important plant-animal interactions such as vertebrate seed dispersal and seed predation, thereby altering plant regeneration and even above-ground biomass. It remains unclear, however, if non-hunted species can compensate for lost vertebrates in defaunated ecosystems. We use a nested exclusion experiment to isolate the effects of different seed enemies in a Bornean rainforest. In four of five tree species, vertebrates kill many seeds (13-66%). Nonetheless, when large mammals are excluded, seed mortality from insects and fungi fully compensates for the lost vertebrate predation, such that defaunation has no effect on seedling establishment. The switch from seed predation by generalist vertebrates to specialist insects and fungi in defaunated systems may alter Janzen-Connell effects and density-dependence in plants. Previous work using simulation models to explore how lost seed dispersal will affect tree species composition and carbon storage may require reevaluation in the context of functional redundancy within complex species interactions networks.
    Matched MeSH terms: Mammals
  8. Williams PJ, Zipkin EF, Brodie JF
    Nat Commun, 2024 Mar 28;15(1):2457.
    PMID: 38548741 DOI: 10.1038/s41467-024-46757-z
    Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how the degree of biogeographic isolation among communities may lead to differences in biodiversity. Biogeographic analyses generally treat regions as discrete units, but species assemblages differ in how much biogeographic history they share, just as species differ in how much evolutionary history they share. Here, we use a continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. On average, biodiversity is better predicted by environment than by isolation, especially for birds. However, mammals in deeply isolated regions are strongly influenced by isolation; mammal assemblages in Australia and Madagascar, for example, are much less diverse than predicted by environment alone and contain unique combinations of functional traits compared to other regions. Neotropical bat assemblages are far more functionally diverse than Paleotropical assemblages, reflecting the different trajectories of bat communities that have developed in isolation over tens of millions of years. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.
    Matched MeSH terms: Mammals
  9. Wetzel FT, Kissling WD, Beissmann H, Penn DJ
    Glob Chang Biol, 2012 Sep;18(9):2707-19.
    PMID: 24501050 DOI: 10.1111/j.1365-2486.2012.02736.x
    Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.
    Matched MeSH terms: Mammals
  10. Wells K, Lakim MB, Beaucournu JC
    Med Vet Entomol, 2011 Sep;25(3):311-9.
    PMID: 21219372 DOI: 10.1111/j.1365-2915.2010.00940.x
    The diversity of ectoparasites in Southeast Asia and flea-host associations remain largely understudied. We explore specialization and interaction patterns of fleas infesting non-volant small mammals in Bornean rainforests, using material from a field survey carried out in two montane localities in northwestern Borneo (Sabah, Malaysia) and from a literature database of all available interactions in both lowland and montane forests. A total of 234 flea individuals collected during our field survey resulted in an interaction network of eight flea species on seven live-captured small mammal species. The interaction network from all compiled studies currently includes 15 flea species and 16 small mammal species. Host specificity and niche partitioning of fleas infesting diurnal treeshrews and squirrels were low, with little difference in specialization among taxa, but host specificity in lowland forests was found to be higher than in montane forests. By contrast, Sigmactenus alticola (Siphonaptera: Leptopsyllidae) exhibited low host specificity by infesting various montane and lowland nocturnal rats. However, this species exhibited low niche partitioning as it was the only commonly recorded flea from rats on Borneo. Overall complementary specialization was of intermediate intensity for both networks and differed significantly from random association; this has important implications for specific interactions that are also relevant to the potential spread of vector-borne diseases.
    Matched MeSH terms: Mammals/parasitology*
  11. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
    Matched MeSH terms: Mammals*
  12. Wearn OR, Carbone C, Rowcliffe JM, Pfeifer M, Bernard H, Ewers RM
    J Anim Ecol, 2019 01;88(1):125-137.
    PMID: 30178485 DOI: 10.1111/1365-2656.12903
    The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially man-made environmental gradients associated with land-use change. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes.
    Matched MeSH terms: Mammals
  13. Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K
    Neurotox Res, 2021 Apr;39(2):504-532.
    PMID: 33141428 DOI: 10.1007/s12640-020-00298-7
    Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
    Matched MeSH terms: Mammals
  14. Ubuka T, Parhar I
    PMID: 29375482 DOI: 10.3389/fendo.2017.00377
    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic-pituitary-gonadal (HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.
    Matched MeSH terms: Mammals
  15. Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ
    PMID: 26635728 DOI: 10.3389/fendo.2015.00179
    Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology.
    Matched MeSH terms: Mammals
  16. Tingga RCT, Anwarali F, Mohd Ridwan A, M. T. Abdullah M, Senawi J
    Sains Malaysiana, 2012;41:659-669.
    A faunal survey aimed to document small mammals was conducted at Nature Study Centre of Kuala Atok, Taman Negara Pahang from 16th to 23rd May 2008. This survey was part of the Biodiversity Inventory Programme that was organised by the Department of Wildlife and National Parks (DWNP). On average, ten mist nets, two four-bank harp traps, 100 cage traps and 40 Sherman traps were set for six trapping nights. A total of 79 individuals from three orders, seven families and 23 species were caught in this study. Of the 23 species, three were frugivorous bats, 15 were insectivorous bats, four were rodents and one was treeshrew. Our sampling site was bounded by Pahang River and mainly covered with lowland secondary forest. This is evidence by the highest abundance of Long-tailed Giant Rat (Leopoldamys sabanus) for non-volant small mammals, and Fawn Roundleaf Bat (Hipposideros cervinus) for volant small mammals that are adapted to disturbed habitat. The increasing species cumulative curve for Chiropteran indicates that there may be more species yet to be recorded from this study site compared to rodents and treeshrews. Preliminary analysis on the species similarity between our study site to other survey reports in Peninsular Malaysia, positioned Kuala Atok with Krau Wildlife Reserve and Bukit Fraser Forest Reserve that are located adjacent to our study site. This similarity further indicate the
    importance of future survey in Kuala Atok especially for Chiropterans to properly document the species diversity in this site that may be as rich as other well studied area e.g. Krau Wildlife Reserve.
    Matched MeSH terms: Mammals
  17. Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, et al.
    Commun Biol, 2019;2:396.
    PMID: 31701025 DOI: 10.1038/s42003-019-0640-y
    Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.
    Matched MeSH terms: Mammals
  18. Thangadurai S, Bajgiran M, Manickam S, Mohana-Kumaran N, Azzam G
    Histochem Cell Biol, 2022 Dec;158(6):517-534.
    PMID: 35881195 DOI: 10.1007/s00418-022-02133-w
    CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.
    Matched MeSH terms: Mammals
  19. Tempelis CH
    PMID: 4395205
    Matched MeSH terms: Mammals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links