Displaying publications 1 - 20 of 149 in total

Abstract:
Sort:
  1. Syakirah Samsudin, Zubaid A.
    Space use and activity patterns by 3 species of small mammals, namely, Tupaia glis, Callosciurus notatus and e. nigrovitatus were determined. The home range size of T. glis ranged from 9,544 to 73,470m2, C. notatus from 6,512 to 16,150m2 and C. nigrovitatus 10,970m2. There was no overlap in the ranges between individuals of the same species and sex but the ranges of different species overlapped. There was no significant difference in the mean daily distance moved among the studied individuals. All individuals showed a bimodal type of activity pattern.
    Penggunaan habitat dan corak aktiviti 3 spesies mamalia kecil, Tupaia glis, CalJosciurus notatus dan C. nigrovitatus telah ditentukan. Saiz banjaran kediaman T. glis adalah antara 9,544 hingga 73,470m2, C. notatus daripada 6,512 hingga 16,150m2 dan C. nigrovitatus 10,970m2. Pertindihan banjaran tidak wujud antara spesies atau jantina yang sama. Walau bagaimanapun, berlaku pertindihan banjaran antara spesies yang berbeza. Tiada perbezaan bererti pada purata jarak yang dilalui setiap hari antara individu-individu yang dikaji. Semua individu yang dikaji menunjukan corak aktiviti jenis bimodal.
    Matched MeSH terms: Mammals
  2. Ball HJ, Jusof FF, Bakmiwewa SM, Hunt NH, Yuasa HJ
    Front Immunol, 2014;5:485.
    PMID: 25346733 DOI: 10.3389/fimmu.2014.00485
    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties, and biological functions. This review analyzes the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.
    Matched MeSH terms: Mammals
  3. Chai-Hoon, K., Jiun-Horng, S., Shiran, M.S., Son, R., Sabrina, S., Noor Zaleha, A.S., et al.
    MyJurnal
    Caenorhabditis elegans (C. elegans) have been widely used as an infection model for mammalian related pathogens with promising results. The bacterial factors required for virulence in non-mammalian host C. elegans play a role in mammalian systems. Previous reported that Salmonella found in vegetable and poultry meat could be potential health hazards to human. This study evaluated the pathogenicity of various serovars of Salmonella enterica (S. enterica) that recovered from local indigenous vegetables and poultry meat using C. elegans as a simple host model. Almost all S. enterica isolates were capable of colonizing the intestine of C. elegans, causing a significant reduction in the survival of nematodes. The colonization of Salmonella in C. elegans revealed that the ability of S. enterica in killing C. elegans correlates with its accumulation in the intestine to achieve full pathogenicity. Using this model, the virulence mechanisms of opportunistic pathogenic S. enterica were found to be not only relevant for the interactions of the bacteria with C. elegans but also with mammalian hosts including humans. Hence, C. elegans model could provide valuable insight into preliminary factors from the host that contributes to the environmental bacterial pathogenesis scenario.
    Matched MeSH terms: Mammals
  4. Yousif AA, Bin Bahari I, Yasir MS
    Curr Radiopharm, 2012 Jan;5(1):34-7.
    PMID: 21864247
    Inactivation constant for V79 cells has been extracted from radiobiology experiments that utilize charged particles to irradiate mammal cells in vitro. Physical parameters such as effective charge, radiation mean free path and linear ionization which characterized protons and heluim-4 particles are determined using of standard values. The relationship between inactivation constant α and physical quality parameters have been determined, in this research, for protons and heluim-4 particles. This approach allows getting the characteristic biological response of inactivation of V79 cells in terms of each selected physical quality parameter. The best regression models are formulated for each obtained relationship.
    Matched MeSH terms: Mammals
  5. Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, et al.
    Genome Res, 2016 10;26(10):1312-1322.
    PMID: 27510566
    Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan (Manis javanica) and Chinese (M. pentadactyla) pangolins. Strikingly, we found that interferon epsilon (IFNE), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE-deficient animal model for studying mammalian immunity.
    Matched MeSH terms: Mammals/anatomy & histology; Mammals/classification; Mammals/genetics*; Mammals/immunology
  6. Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, et al.
    Commun Biol, 2019;2:396.
    PMID: 31701025 DOI: 10.1038/s42003-019-0640-y
    Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.
    Matched MeSH terms: Mammals
  7. Lee PS, Gan HM, Clements GR, Wilson JJ
    Genome, 2016 May 11.
    PMID: 27696907
    Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.
    Matched MeSH terms: Mammals
  8. Beaucournu JC, Wells K
    Parasite, 2009 Dec;16(4):283-7.
    PMID: 20092059
    We report on fleas collected from small mammals in a lower mountane rainforest in the Crocker Range National Park, Sabah, Borneo. Macrostylophora durdeni n. sp., collected from Dremomys everetti and, of minor importance, Tupaia montana, is described. Further records include Gryphopsylla jacobsoni segragata and Lentistivalius vomerus from T. montana.
    Matched MeSH terms: Mammals/anatomy & histology; Mammals/classification; Mammals/parasitology*
  9. Fewtrell MS, Mohd Shukri NH, Wells JCK
    BMC Med, 2020 01 09;18(1):4.
    PMID: 31915002 DOI: 10.1186/s12916-019-1473-8
    BACKGROUND: Promoting breastfeeding is an important public health intervention, with benefits for infants and mothers. Even modest increases in prevalence and duration may yield considerable economic savings. However, despite many initiatives, compliance with recommendations is poor in most settings - particularly for exclusive breastfeeding. Mothers commonly consult health professionals for infant feeding and behavioural problems.

    MAIN BODY: We argue that broader consideration of lactation, incorporating evolutionary, comparative and anthropological aspects, could provide new insights into breastfeeding practices and problems, enhance research and ultimately help to develop novel approaches to improve initiation and maintenance. Our current focus on breastfeeding as a strategy to improve health outcomes must engage with the evolution of lactation as a flexible trait under selective pressure to maximise reproductive fitness. Poor understanding of the dynamic nature of breastfeeding may partly explain why some women are unwilling or unable to follow recommendations.

    CONCLUSIONS: We identify three key implications for health professionals, researchers and policymakers. Firstly, breastfeeding is an adaptive process during which, as in other mammals, variability allows adaptation to ecological circumstances and reflects mothers' phenotypic variability. Since these factors vary within and between humans, the likelihood that a 'one size fits all' approach will be appropriate for all mother-infant dyads is counterintuitive; flexibility is expected. From an anthropological perspective, lactation is a period of tension between mother and offspring due to genetic 'conflicts of interest'. This may underlie common breastfeeding 'problems' including perceived milk insufficiency and problematic infant crying. Understanding this - and adopting a more flexible, individualised approach - may allow a more creative approach to solving these problems. Incorporating evolutionary concepts may enhance research investigating mother-infant signalling during breastfeeding; where possible, studies should be experimental to allow identification of causal effects and mechanisms. Finally, the importance of learned behaviour, social and cultural aspects of primate (especially human) lactation may partly explain why, in cultures where breastfeeding has lost cultural primacy, promotion starting in pregnancy may be ineffective. In such settings, educating children and young adults may be important to raise awareness and provide learning opportunities that may be essential in our species, as in other primates.

    Matched MeSH terms: Mammals
  10. O'Bryan CJ, Garnett ST, Fa JE, Leiper I, Rehbein JA, Fernández-Llamazares Á, et al.
    Conserv Biol, 2021 06;35(3):1002-1008.
    PMID: 32852067 DOI: 10.1111/cobi.13620
    Indigenous Peoples' lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species' AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples' lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples' lands that had low human pressure. Our results show how important Indigenous Peoples' lands are to the successful implementation of conservation and sustainable development agendas worldwide.
    Matched MeSH terms: Mammals
  11. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
    Matched MeSH terms: Mammals/genetics
  12. Tan CW, Gamage AM, Yap WC, Wei Tang LJ, Sun Y, Yang XL, et al.
    Emerg Microbes Infect, 2023 Dec;12(1):2208683.
    PMID: 37143369 DOI: 10.1080/22221751.2023.2208683
    Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.
    Matched MeSH terms: Mammals
  13. Yang P, Chen Y, Huang Z, Xia H, Cheng L, Wu H, et al.
    Elife, 2022 Oct 06;11.
    PMID: 36200862 DOI: 10.7554/eLife.80127
    Despite the importance of innate immunity in invertebrates, the diversity and function of innate immune cells in invertebrates are largely unknown. Using single-cell RNA-seq, we identified prohemocytes, monocytic hemocytes, and granulocytes as the three major cell-types in the white shrimp hemolymph. Our results identified a novel macrophage-like subset called monocytic hemocytes 2 (MH2) defined by the expression of certain marker genes, including Nlrp3 and Casp1. This subtype of shrimp hemocytes is phagocytic and expresses markers that indicate some conservation with mammalian macrophages. Combined, our work resolves the heterogenicity of hemocytes in a very economically important aquatic species and identifies a novel innate immune cell subset that is likely a critical player in the immune responses of shrimp to threatening infectious diseases affecting this industry.
    Matched MeSH terms: Mammals/genetics
  14. Muul I, Liat LB, Walker JS
    Trans R Soc Trop Med Hyg, 1975;69(1):121-30.
    PMID: 806995
    The overall comparisons of habitats are given in (Table III). The habitats are arranged in order of extent of alterations by man, with the least disturbed at the top. The highest average blood isolation rates came from the least disturbed areas. The highest monthly maximal rickettsial isolation rates from blood and maximal prevalence rates of antibody per month were also obtained at Bukit Lanjan, the habitat least altered by activities of man. The lowest average blood isolation rate (6%) and the lowest monthly maximal rickettsial isolation and antibody prevalence rates were obtained at Bukit Mandol, the habitat most extensively and intensively altered by man. The intermediate habitats had intermediate rates. We caution anyone interpreting these observations, however, in terms of human disease, which seem to be associated with hyperendemic foci. Here we are not dealing with hyperendemicity from the standpoint of human disease, but present evidence of widespread endemicity from which hyperendemic foci may derive. Also, we have not yet identified the prevalent strains and do not know their infectivity to man.
    Matched MeSH terms: Mammals
  15. Siew ZY, Loh A, Segeran S, Leong PP, Voon K
    DNA Cell Biol, 2023 Jun;42(6):289-304.
    PMID: 37015068 DOI: 10.1089/dna.2022.0561
    Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
    Matched MeSH terms: Mammals
  16. Selvaraj C, Safi SZ, Vijayakumar R
    Adv Protein Chem Struct Biol, 2023;137:135-159.
    PMID: 37709373 DOI: 10.1016/bs.apcsb.2023.05.001
    Circadian rhythms are autonomous oscillators developed by the molecular circadian clock, essential for coordinating internal time with the external environment in a 24-h daily cycle. In mammals, this circadian clock system plays a major role in all physiological processes and severely affects human health. The regulation of the circadian clock extends beyond the clock genes to involve several clock-controlled genes. Hence, the aberrant expression of these clock genes leads to the downregulation of important targets that control the cell cycle and the ability to undergo apoptosis. This may lead to genomic instability and promotes carcinogenesis. Alteration in the clock genes and their modulation is recognized as a new approach for the development of effective treatment against several diseases, including cancer. Until now, there has been a lack of understanding of circadian rhythms and cancer disease. For that, this chapter aims to represent the core components of circadian rhythms and their function in cancer pathogenesis and progression. In addition, the clinical impacts, current clock drugs, and potential therapeutic targets have been discussed.
    Matched MeSH terms: Mammals
  17. Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, et al.
    Adv Healthc Mater, 2023 Aug;12(20):e2203104.
    PMID: 36972409 DOI: 10.1002/adhm.202203104
    In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
    Matched MeSH terms: Mammals
  18. Muñoz-Cueto JA, Paullada-Salmerón JA, Aliaga-Guerrero M, Cowan ME, Parhar IS, Ubuka T
    PMID: 29163357 DOI: 10.3389/fendo.2017.00285
    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish.
    Matched MeSH terms: Mammals
  19. Mark JKK, Lim CSY, Nordin F, Tye GJ
    Mol Biol Rep, 2022 Nov;49(11):10593-10608.
    PMID: 35674877 DOI: 10.1007/s11033-022-07651-3
    BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this.

    METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects.

    CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.

    Matched MeSH terms: Mammals
  20. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Mammals/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links