Displaying publications 1 - 20 of 356 in total

Abstract:
Sort:
  1. Windarsih A, Bakar NKA, Rohman A, Erwanto Y
    Anal Sci, 2024 Mar;40(3):385-397.
    PMID: 38095741 DOI: 10.1007/s44211-023-00470-x
    Due to the different price and high quality, halal meat such as beef can be adulterated with non-halal meat with low price to get an economical price. The objective of this research was to develop an analytical method for halal authentication testing of beef meatballs (BM) from dog meat (DM) using a non-targeted metabolomics approach employing liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. The differentiation of authentic BM from that adulterated with DM was successfully performed using partial least square-discriminant analysis (PLS-DA) with high accuracy (R2X = 0.980, and R2Y = 0.980) and good predictivity (Q2 = 0.517). In addition, partial least square (PLS) and orthogonal PLS (OPLS) were successfully used to predict the DM added (% w/w) in BM with high accuracy (R2 > 0.990). A number of metabolites, potential for biomarker candidates, were identified to differentiate BM and that adulterated with DM. It showed that the combination of a non-targeted LC-HRMS Orbitrap metabolomics and chemometrics could detect up to 0.1% w/w of DM adulteration. The developed method was successfully applied for analysis of commercial meatball samples (n = 28). Moreover, pathway analysis revealed that beta-alanine, histidine, and ether lipid metabolism were significantly affected by dog meat adulteration. In summary, this developed method has great potential to be developed and used as an alternative method for analysis of non-halal meats in halal meat products.
    Matched MeSH terms: Meat/analysis
  2. Mokhtar NFK, Shun YQ, Raja Nhari RMH, Mohamad NA, Shahidan NM, Warsanah IH, et al.
    PMID: 38190283 DOI: 10.1080/19440049.2023.2298476
    The inclusion of ingredients derived from pigs in highly processed consumer products poses a significant challenge for DNA-targeted analytical enforcement, which could be overcome by using digital PCR. However, most species detection methods use digital PCR to target single-copy nuclear genes, which limits their sensitivity. In this work, we examined the performance of a nanoplate-based digital PCR method that targets multi-copy nuclear (MPRE42) and mitochondrial (Cytb) genes. Poor separation of positive and negative partitions, as well as a 'rain effect' were obtained in the porcine-specific MPRE42 assay. Among the optimization strategies examined, the inclusion of restriction enzymes slightly improved the separation of positive and negative partitions, but a more extensive 'rain effect' was observed. The high copy number of the MPRE42 amplicon is hypothesized to contribute to the saturation of the positive signal. In contrast, the porcine-specific Cytb assay achieved perfect separation of positive and negative partitions with no 'rain effect'. This assay can detect as little as 0.4 pg of pork DNA, with a sensitivity of 0.05% (w/w) in a pork-chicken mixture, proving its applicability for detecting pork in meat and meat-based products. For the MPRE42 assay, potential applications in highly degraded products such as gelatin and lard are anticipated.
    Matched MeSH terms: Meat/analysis
  3. Drewnowski A, Monsivais P, Mognard E, Ismail Noor M, Karim N, Laporte C, et al.
    Asia Pac J Public Health, 2024 Jan;36(1):36-42.
    PMID: 38186372 DOI: 10.1177/10105395231219049
    The diversity of protein food sources, animal and plant, may be a proxy measure of protein quality and adequate protein nutrition. A population-based sample of 1604 Malaysians aged ≥18 y completed one 24-h dietary recall and a new 29-item protein diversity indicator (PDI). Socio-demographic data were obtained by self-report. Mean total protein intakes were 75.2 g/d from 24-h recalls and 74.9 g/d from PDI. Protein diversity indicator-estimated protein intakes were 36.2% from meat and poultry, 8.8% from fish, 16.0% from eggs and dairy, and 39.0% from plants. Intakes of animal proteins varied with socioeconomic status and ethnicity and were associated with higher protein quality, defined as the adequacy of essential amino acids (EAAs) relative to protein requirements. Protein intakes and protein quality in Malaysia were generally adequate. Protein diversity indicator metrics can complement current methods of dietary assessment and may be useful for monitoring protein diversity and quality in other countries currently undergoing nutrition transition.
    Matched MeSH terms: Meat
  4. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al.
    Crit Rev Food Sci Nutr, 2023 Nov;63(33):11830-11858.
    PMID: 35821661 DOI: 10.1080/10408398.2022.2096562
    Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
    Matched MeSH terms: Meat/analysis
  5. Hayat MN, Kumar P, Sazili AQ
    Poult Sci, 2023 Sep;102(9):102838.
    PMID: 37392488 DOI: 10.1016/j.psj.2023.102838
    With the continuous rise of Muslim and Jewish populations and their increasing preference for ritually slaughtered poultry meat, the industry is forced to redefine its existing product-centric quality standard toward a new consumer-centric dimension of quality. The new dimension is mainly attributed to ensuring animal welfare and ethical treatment (ethical quality), spiritual quality (such as halal status, cleanliness), and eating quality standards set by religion. To meet consumer quality requirements while maintaining high production performance, the industry has incorporated newer technologies that are compatible with religious regulations such as stunning methods like electrical water bath stunning. However, the introduction of new techniques such as electrical water bath stunning has been met with mixed reactions. Some religious scholars have banned the use of any stunning methods in religious slaughter, as halal status is believed to be compromised in cases where birds have been stunned to death before slaughter. Nevertheless, some studies have shown the positive side of the electrical water bath stunning procedure in terms of preserving eating, ethical, and spiritual quality. Therefore, the present study aims to critically analyze the application of various aspects of electrical water bath stunning such as current intensity and frequency on various quality attributes, namely, ethical, spiritual, and eating quality of poultry meat.
    Matched MeSH terms: Meat/analysis
  6. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Meat
  7. Windarsih A, Bakar NKA, Dachriyanus, Yuliana ND, Riswanto FDO, Rohman A
    Molecules, 2023 Aug 09;28(16).
    PMID: 37630216 DOI: 10.3390/molecules28165964
    Beef sausage (BS) is one of the most favored meat products due to its nutrition and good taste. However, for economic purposes, BS is often adulterated with pork by unethical players. Pork consumption is strictly prohibited for religions including Islam and Judaism. Therefore, advanced detection methods are highly required to warrant the halal authenticity of BS. This research aimed to develop a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method to determine the halal authenticity of BS using an untargeted metabolomics approach. LC-HRMS was capable of detecting various metabolites in BS and BS containing pork. The presence of pork in BS could be differentiated using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) with high accuracy. PLS-DA perfectly classified authentic BS and BS containing pork in all concentration levels of pork with R2X = (0.821), R2Y(= 0.984), and Q2 = (0.795). The level of pork in BS was successfully predicted through partial least squares (PLS) and orthogonal PLS (OPLS) chemometrics. Both models gave high R2 (>0.99) actual and predicted values as well as few errors, indicating good accuracy and precision. Identification of discriminating metabolites' potential as biomarker candidates through variable importance for projections (VIP) value revealed metabolites of 2-arachidonyl-sn-glycero-3-phosphoethanolamine, 3-hydroxyoctanoylcarnitine, 8Z,11Z,14Z-eicosatrienoic acid, D-(+)-galactose, oleamide, 3-hydroxyhexadecanoylcarnitine, arachidonic acid, and α-eleostearic acid as good indicators to detect pork. It can be concluded that LC-HRMS metabolomics combined with PCA, PLS-DA, PLS, and OPLS was successfully used to detect pork adulteration in beef sausages. The results imply that LC-HRMS untargeted metabolomics in combination with chemometrics is a promising alternative as an analytical technique to detect pork in sausage products. Further analysis of larger samples is required to warrant the reproducibility.
    Matched MeSH terms: Red Meat*; Meat Products*
  8. Raja Nhari RMH, Soh JH, Khairil Mokhtar NF, Mohammad NA, Mohd Hashim A
    PMID: 37535014 DOI: 10.1080/19440049.2023.2242955
    Lateral flow devices (LFDs) are straightforward scientific tools that have made substantial advances in recent years. They have been used in many fields including the meat industry to detect disease markers, determine meat freshness or meat species determination. They are, therefore, significant in the research of meat adulteration by mixed animal species, because food component authenticity is a serious concern encompassing health, economic, legal, and religious issues. Pork adulteration is one of the most crucial issues in the global meat industry. In this review, we discuss the various types of LFDs and recent research on the development of LFDs as an authenticity tool for detecting pig additives in meat-based products, and how regulatory authorities could adopt LFDs for their workflows. Despite the benefits of rapidity, simplicity, low cost, high sensitivity, and specificity, researchers face challenges when using LFD as a final confirmation test. Future directions are suggested for globalising the use of LFD as a halal authentication method.
    Matched MeSH terms: Meat/analysis
  9. de Las Heras-Delgado S, Shyam S, Cunillera È, Dragusan N, Salas-Salvadó J, Babio N
    Food Res Int, 2023 Jul;169:112857.
    PMID: 37254431 DOI: 10.1016/j.foodres.2023.112857
    BACKGROUND: Plant-Based Alternative Products (PBAPs) to meat and dairy are increasingly available. Their relative nutritional quality in comparison to animal-based homologs is poorly documented.

    OBJECTIVE: To characterize and evaluate the plant-based alternatives available on the market in Spain in comparison to animal products in terms of their nutritional composition and profile, and degree of processing.

    METHODS: Nutritional information for PBAPs and homologs were obtained from the Spanish 'Veggie base', branded food composition database. Five PBAPs categories (cheese, dairy products, eggs, meat, and fish, n = 922) were compared to animal-based processed (n = 922) and unprocessed (n = 381) homologs, using the modified version of the Food Standard Agency Nutrient Profiling System (FSAm-NPS score) and NOVA classification criteria.

    RESULTS: Compared to processed or unprocessed animal food, PBAPs contain significantly higher sugar, salt, and fiber. PBAPs for fish, seafood, and meat were lower in protein and saturated fatty acids. Overall, 68% of PBAPs, 43% of processed and 75% of unprocessed animal-homologs had Nutri-Score ratings of A or B (most healthy). About 17% of PBAPs, 35% of processed and 13% of unprocessed animal-based food were in Nutri-Score categories D or E (least healthy). Dairy, fish, and meat alternatives had lower FSAm-NPS scores (most healthy), while cheese alternatives scored higher (least healthy) than animal-based homologs. Unprocessed fish and meat were healthier than similar PBAPs based on FSAm-NPS criteria. Approximately 37% of PBAPs and 72% of processed animal-based products were ultra-processed food (NOVA group 4). Within the ultra-processed food group, Nutri-Score varied widely.

    CONCLUSIONS: Most PBAPs had better nutrient profile than animal-based homologs. However, cheese, fish and meats PBAPs had poorer nutrient profile and were more processed. Given the high degree of processing and variable nutritional profile, PBAPs require a multi-dimensional evaluation of their health impact.

    Matched MeSH terms: Meat*
  10. Hajar-Azhari S, Daud N, Muhialdin BJ, Joghee N, Kadum H, Meor Hussin AS
    Int J Food Microbiol, 2023 Jun 16;395:110190.
    PMID: 37030193 DOI: 10.1016/j.ijfoodmicro.2023.110190
    This study evaluated the potential of fermented garlic as a marinated lamb sauce ingredient to improve the quality and shelf life of chilled lamb. Garlic was subjected to Lacto-fermentation for 72 h at 37 °C using Lacticaseibacillus casei. The 1H NMR metabolomics profile showed the presence of eight amino acids and five organic acids in fermented garlic, indicating the attribution to the antioxidant and antimicrobial activities. The FRAP and DPPH assays of fermented garlic revealed antioxidant activities of 0.45 ± 0.09 mmol/100 g DW and 93.85 ± 0.02 %, respectively. Meanwhile, fermented garlic inhibited the growth of Escherichia coli (95 %), Staphylococcus aureus (99 %) and Salmonella Typhimurium (98 %). When fermented garlic was added to the marinade sauce, it successfully reduced the microbial load of lamb meat by 0.5 log CFU/g after 3 days of storage. There were no significant differences in color between the control and marinated lamb after 3 days of marinating in a sauce formulated with fermented garlic. Furthermore, marinated lamb significantly improved water-holding capacity, texture, juiciness, and overall acceptance. These findings indicated a potential addition of fermented garlic in marinade lamb sauce recipes to improve the quality and safety of meat products.
    Matched MeSH terms: Red Meat*; Meat/analysis
  11. Hu R, Zhang M, Jiang Q, Law CL
    Meat Sci, 2023 Apr;198:109084.
    PMID: 36599205 DOI: 10.1016/j.meatsci.2022.109084
    The effect of infrared and microwave alternate thawing (IR + MWT) on frozen pork were compared to fresh, air thawing (AT), infrared thawing (IRT), microwave thawing (MWT). The IR + MWT took only about 11.81 min of the thawing time compared to AT 66.5 min, and the Raman spectroscopy and Low-field nuclear magnetic resonance (LF-NMR) results showed that the IR + MWT maintained better protein secondary structure composition and moisture state compared to MWT and IRT. In terms of thawing losses, IR + MWT had the lowest loss 1.92%. In terms of texture, IR + MWT had the least effect on the post-thawing textural properties and increased the springiness of the meat. Scanning electron microscopy results also showed that there was reduced damage to the muscle structure with IR + MWT. Regarding the odor of the meat after thawing, IR + MWT retained the odor better and was closer to the fresh sample. Therefore, IR + MWT can be used to enhance the thawing rate to protect the quality of the thawed pork.
    Matched MeSH terms: Red Meat*; Meat/analysis
  12. Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, et al.
    Nature, 2023 Apr;616(7955):104-112.
    PMID: 36813964 DOI: 10.1038/s41586-023-05737-x
    Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
    Matched MeSH terms: Meat
  13. Cheah YK, Appannah G, Abdul Adzis A
    Nutr Cancer, 2023;75(2):498-509.
    PMID: 36111368 DOI: 10.1080/01635581.2022.2123534
    Background: The objective of the present study is to investigate the influences of sociodemographic and household factors on consumption expenditure on processed meat among households in Malaysia.Methods: Data were extracted from the Malaysian Household Expenditure Survey (HES) 2016. Lognormal hurdle models were utilized to assess the likelihood of consuming processed meat and the amount consumed. The independent variables consisted of household heads' age, educational level, gender, marital status, employment status, ethnicity, as well as household income, household region and household locality.Results: Bumiputera households with younger heads were more likely to consume processed meat and spent more than households with older heads. Chinese and Indian households in a higher income group had a higher likelihood of consuming and spending on processed meat than those in a lower income group. The probability of consuming processed meat and the amount consumed were positively associated with being from East Malaysia and urban areas.Conclusions: There are distinguished roles of sociodemographic and household factors across ethnic groups in consumption expenditure on processed meat. Policy makers should take account of age, income, education, household region and household locality factors when formulating intervention measures.
    Matched MeSH terms: Meat
  14. Windarsih A, Riswanto FDO, Bakar NKA, Yuliana ND, Dachriyanus, Rohman A
    Molecules, 2022 Nov 29;27(23).
    PMID: 36500423 DOI: 10.3390/molecules27238325
    Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.
    Matched MeSH terms: Meat/analysis
  15. Maritha V, Harlina PW, Musfiroh I, Gazzali AM, Muchtaridi M
    Molecules, 2022 Nov 04;27(21).
    PMID: 36364396 DOI: 10.3390/molecules27217571
    The halal status of meat products is an important factor being considered by many parties, especially Muslims. Analytical methods that have good specificity for the authentication of halal meat products are important as quality assurance to consumers. Metabolomic and lipidomic are two useful strategies in distinguishing halal and non-halal meat. Metabolomic and lipidomic analysis produce a large amount of data, thus chemometrics are needed to interpret and simplify the analytical data to ease understanding. This review explored the published literature indexed in PubMed, Scopus, and Google Scholar on the application of chemometrics as a tool in handling the large amount of data generated from metabolomic and lipidomic studies specifically in the halal authentication of meat products. The type of chemometric methods used is described and the efficiency of time in distinguishing the halal and non-halal meat products using chemometrics methods such as PCA, HCA, PLS-DA, and OPLS-DA is discussed.
    Matched MeSH terms: Meat/analysis
  16. Saminathan M, Mohamed WNW, Noh 'M, Ibrahim NA, Fuat MA, Ramiah SK
    Trop Anim Health Prod, 2022 Jan 17;54(1):64.
    PMID: 35038035 DOI: 10.1007/s11250-022-03046-5
    Palm oil is a natural energy source ingredient in poultry diets that offers a broad range of beneficial effects on the performance of broiler chickens. This review was conducted to highlight the impact of palm oil as a feed ingredient on growth performance and carcass quality, as well as the biochemical, antioxidant activity and tissue fatty acids (FA) composition of broiler chickens. Palm oil inclusion in broiler chickens' rations contributes significantly to the high metabolisable energy (ME) of feed formulation, increases feed palatability and decreases digesta passage rate in the intestine. The reviewed literature indicated that dietary palm oil has a beneficial effect on broiler chickens' overall growth performance traits. The addition of palm oil can also improve the heat tolerance of chickens reared in high ambient temperature conditions. Regardless of breed and breeding conditions, palm oil exhibits good oxidative stability in broiler chickens due to the presence of prevalent phytonutrient elements in this oil. The inclusion of palm oil increased palmitic (C16:0) and oleic (C18:1) acids in tissue deposits, which improves meat stability and quality. Moreover, molecular studies have revealed that higher mRNA expression of several lipid-related hepatic genes in broiler chickens fed palm oil. Nonetheless, dietary palm oil can influence FA deposition in tissues, modulate lipoprotein and triglycerides (TG) levels, and cytokine contents in the blood serum of broiler chickens.
    Matched MeSH terms: Meat/analysis
  17. Golden CD, Koehn JZ, Shepon A, Passarelli S, Free CM, Viana DF, et al.
    Nature, 2021 Oct;598(7880):315-320.
    PMID: 34526720 DOI: 10.1038/s41586-021-03917-1
    Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type ('seafood' or 'fish')1-4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.
    Matched MeSH terms: Red Meat
  18. Iqbal R, Dehghan M, Mente A, Rangarajan S, Wielgosz A, Avezum A, et al.
    Am J Clin Nutr, 2021 09 01;114(3):1049-1058.
    PMID: 33787869 DOI: 10.1093/ajcn/nqaa448
    BACKGROUND: Dietary guidelines recommend limiting red meat intake because it is a major source of medium- and long-chain SFAs and is presumed to increase the risk of cardiovascular disease (CVD). Evidence of an association between unprocessed red meat intake and CVD is inconsistent.

    OBJECTIVE: The study aimed to assess the association of unprocessed red meat, poultry, and processed meat intake with mortality and major CVD.

    METHODS: The Prospective Urban Rural Epidemiology (PURE) Study is a cohort of 134,297 individuals enrolled from 21 low-, middle-, and high-income countries. Food intake was recorded using country-specific validated FFQs. The primary outcomes were total mortality and major CVD. HRs were estimated using multivariable Cox frailty models with random intercepts.

    RESULTS: In the PURE study, during 9.5 y of follow-up, we recorded 7789 deaths and 6976 CVD events. Higher unprocessed red meat intake (≥250 g/wk vs. <50 g/wk) was not significantly associated with total mortality (HR: 0.93; 95% CI: 0.85, 1.02; P-trend = 0.14) or major CVD (HR: 1.01; 95% CI: 0.92, 1.11; P-trend = 0.72). Similarly, no association was observed between poultry intake and health outcomes. Higher intake of processed meat (≥150 g/wk vs. 0 g/wk) was associated with higher risk of total mortality (HR: 1.51; 95% CI: 1.08, 2.10; P-trend = 0.009) and major CVD (HR: 1.46; 95% CI: 1.08, 1.98; P-trend = 0.004).

    CONCLUSIONS: In a large multinational prospective study, we did not find significant associations between unprocessed red meat and poultry intake and mortality or major CVD. Conversely, a higher intake of processed meat was associated with a higher risk of mortality and major CVD.

    Matched MeSH terms: Meat*
  19. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Meat/analysis; Meat/classification*
  20. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Meat/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links