Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Chan YS, Teo YX, Gouwanda D, Nurzaman SG, Gopalai AA
    Phys Eng Sci Med, 2023 Dec;46(4):1375-1386.
    PMID: 37493930 DOI: 10.1007/s13246-023-01305-9
    This study proposes and investigates the feasibility of the passive assistive device to assist agricultural harvesting task and reduce the Musculoskeletal Disorder (MSD) risk of harvesters using computational musculoskeletal modelling and simulations. Several passive assistive devices comprised of elastic exotendon, which acts in parallel with different back muscles (rectus abdominis, longissimus, and iliocostalis), were designed and modelled. These passive assistive devices were integrated individually into the musculoskeletal model to provide passive support for the harvesting task. The muscle activation, muscle force, and joint moment were computed with biomechanical simulations for unassisted and assisted motions. The simulation results demonstrated that passive assistive devices reduced muscle activation, muscle force, and joint moment, particularly when the devices were attached to the iliocostalis and rectus abdominis. It was also discovered that assisting the longissimus muscle can alleviate the workload by distributing a portion of it to the rectus abdominis. The findings in this study support the feasibility of adopting passive assistive devices to reduce the MSD risk of the harvesters during agricultural harvesting. These findings can provide valuable insights to the engineers and designers of physical assistive devices on which muscle(s) to assist during agricultural harvesting.
    Matched MeSH terms: Mechanical Phenomena
  2. Ahmad Z, Zafar N, Mahmood A, Sarfraz RM, Latif R, Gad HA
    Pharm Dev Technol, 2023 Nov;28(9):896-906.
    PMID: 37873604 DOI: 10.1080/10837450.2023.2272863
    Fast dissolving microneedles (F-dMN) are quite a novel approach delivering specific drug molecules directly into the bloodstream, bypassing the first-pass effect. The present study reported an F-dMN patch to enhance systemic delivery of simvastatin in a patient-friendly manner. The F-dMN patch was developed using polyvinyl pyrrolidone and polyvinyl alcohol and characterized using light microscopy, SEM, XRD, FTIR, mechanical strength, drug content (%), an ex-vivo penetration study, an ex-vivo drug release study, a skin irritation test, and a pharmacokinetics study. The optimized F-dMN patch exhibited excellent elongation of 35.17%, good tensile strength of 9.68  MPa, an appropriate moisture content of 5.65%, and good penetrability up to 560 µm. Moreover, it showed 93.4% of the drug content within the needles and 81.75% in-vitro release. Histopathological findings and a skin irritation study proved that the F-dMN patch was biocompatible and did not cause any sort of irritation on animal skin. Pharmacokinetic parameters of F-dMN patches were improved (Cmax 6.974 µg/ml, tmax 1 hr and AUC 19. 518 µg.h/ml) as compared to tablet Simva 20 mg solution (Cmax 2.485 µg/ml, tmax 1.4 hr and AUC 11.199 µg.h/ml), thus confirming bioavailability enhancement. Moreover, stability studies confirmed the stability of the developed F-dMN patch, as investigated by axial needle fracture force and drug content.
    Matched MeSH terms: Mechanical Phenomena
  3. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Mechanical Phenomena
  4. Lo FF, Kow KW, Kung F, Ahamed F, Kiew PL, Yeap SP, et al.
    Sci Total Environ, 2021 Aug 01;780:146337.
    PMID: 33770606 DOI: 10.1016/j.scitotenv.2021.146337
    Nano-magnetites are widely researched for its potential as an excellent adsorbent in many applications. However, the efficiency of the nano-magnetites are hindered by their tendency to agglomerate. In this work, we dispersed and embedded the nano-magnetites in a porous silica gel matrix to form a nanocomposite to reduce the extent of agglomeration and to enhance the adsorption performance. Our experimental results showed that the removal efficiency of Cu2+ ion has improved by 46% (22.4 ± 2.2%) on the nano-magnetite-silica-gel (NMSG) nanocomposite as compared to pure nano-magnetites (15.3 ± 0.6%). The adsorption capacity is further enhanced by 39% (from 11.2 ± 1.1 to 15.6 ± 1.6 mg/g) by subjecting the NMSG to a magnetic field prior to adsorption. We infer that the magnetic field aligned the magnetic domains within the nano-magnetites, resulting in an increased Lorentz force during adsorption. Similar alignment of magnetic domains is near to impossible in pure nano-magnetites due to severe agglomeration. We further found that the adsorption capacity of the NMSG can be manipulated with an external magnetic field by varying the strength and the configurations of the field. Equipped with proper process design, our finding has great potentials in processes that involve ion-adsorptions, for example, NMSG can: (i) replace/reduce chemical dosing in controlling adsorption kinetics, (ii) replace/reduce complex chemicals required in ion-chromatography columns, and (iii) reduce wastage of nano-adsorbents by immobilizing it in a porous matrix.
    Matched MeSH terms: Mechanical Phenomena
  5. Rizal S, Mistar EM, Oyekanmi AA, H P S AK, Alfatah T, Olaiya NG, et al.
    Molecules, 2021 Jul 13;26(14).
    PMID: 34299524 DOI: 10.3390/molecules26144248
    The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
    Matched MeSH terms: Mechanical Phenomena
  6. Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al.
    Sci Rep, 2021 May 25;11(1):10936.
    PMID: 34035434 DOI: 10.1038/s41598-021-90484-0
    The widespread use of magnetorheological elastomer (MRE) materials in various applications has yet to be limited due to the fact that there are substantial deficiencies in current experimental and theoretical research on its microstructural durability behavior. In this study, MRE composed of silicon rubber (SR) and 70 wt% of micron-sized carbonyl iron particles (CIP) was prepared and subjected to stress relaxation evaluation by torsional shear load. The microstructure and particle distribution of the obtained MRE was evaluated by a field emission scanning electron microscopy (FESEM). The influence of constant low strain at 0.01% is the continuing concern within the linear viscoelastic (LVE) region of MRE. Stress relaxation plays a significant role in the life cycle of MRE and revealed that storage modulus was reduced by 8.7%, normal force has weakened by 27%, and stress performance was reduced by 6.88% along approximately 84,000 s test duration time. This time scale was the longest ever reported being undertaken in the MRE stress relaxation study. Novel micro-mechanisms that responsible for the depleted performance of MRE was obtained by microstructurally observation using FESEM and in-phase mode of atomic force microscope (AFM). Attempts have been made to correlate strain localization produced by stress relaxation, with molecular deformation in MRE amorphous matrix. Exceptional attention was focused on the development of molecular slippage, disentanglement, microplasticity, microphase separation, and shear bands. The relation between these microstructural phenomena and the viscoelastic properties of MRE was diffusely defined and discussed. The presented MRE is homogeneous with uniform distribution of CIP. The most significant recent developments of systematic correlation between the effects of microstructural deformation and durability performance of MRE under stress relaxation has been observed and evaluated.
    Matched MeSH terms: Mechanical Phenomena
  7. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Mechanical Phenomena
  8. Parasuraman S, Elamvazuthi I, Kanagaraj G, Natarajan E, Pugazhenthi A
    Materials (Basel), 2021 Mar 31;14(7).
    PMID: 33807476 DOI: 10.3390/ma14071726
    Reinforced aluminum composites are the basic class of materials for aviation and transport industries. The machinability of these composites is still an issue due to the presence of hard fillers. The current research is aimed to investigate the drilling topographies of AA7075/TiB2 composites. The samples were prepared with 0, 3, 6, 9 and 12 wt.% of fillers and experiments were conducted by varying the cutting speed, feed, depth of cut and tool nose radius. The machining forces and surface topographies, the structure of the cutting tool and chip patterns were examined. The maximum cutting force was recorded upon increase in cutting speed because of thermal softening, loss of strength discontinuity and reduction of the built-up-edge. The increased plastic deformation with higher cutting speed resulted in the excess metal chip. In addition, the increase in cutting speed improved the surface roughness due to decrease in material movement. The cutting force was decreased upon high loading of TiB2 due to the deterioration of chips caused by fillers. Further introduction of TiB2 particles above 12 wt.% weakened the composite; however, due to the impact of the microcutting action of the fillers, the surface roughness was improved.
    Matched MeSH terms: Mechanical Phenomena
  9. Prakash C, Pramanik A, Basak AK, Dong Y, Debnath S, Shankar S, et al.
    Materials (Basel), 2021 Mar 30;14(7).
    PMID: 33808311 DOI: 10.3390/ma14071699
    In the present research work, an effort has been made to explore the potential of using the adhesive tapes while drilling CFRPs. The input parameters, such as drill bit diameter, point angle, Scotch tape layers, spindle speed, and feed rate have been studied in response to thrust force, torque, circularity, diameter error, surface roughness, and delamination occurring during drilling. It has been found that the increase in point angle increased the delamination, while increase in Scotch tape layers reduced delamination. The surface roughness decreased with the increase in drill diameter and point angle, while it increased with the speed, feed rate, and tape layer. The best low roughness was obtained at 6 mm diameter, 130° point angle, 0.11 mm/rev feed rate, and 2250 rpm speed at three layers of Scotch tape. The circularity error initially increased with drill bit diameter and point angle, but then decreased sharply with further increase in the drill bit diameter. Further, the circularity error has non-linear behavior with the speed, feed rate, and tape layer. Low circularity error has been obtained at 4 mm diameter, 118° point angle, 0.1 mm/rev feed rate, and 2500 RPM speed at three layers of Scotch tape. The low diameter error has been obtained at 6 mm diameter, 130° point angle, 0.12 mm/rev feed rate, and 2500 rpm speed at three layer Scotch tape. From the optical micro-graphs of drilled holes, it has been found that the point angle is one of the most effective process parameters that significantly affects the delamination mechanism, followed by Scotch tape layers as compared to other parameters such as drill bit diameter, spindle speed, and feed rate.
    Matched MeSH terms: Mechanical Phenomena
  10. Norhaniza R, Mazlan SA, Ubaidillah U, Sedlacik M, Aziz SAA, Nazmi N, et al.
    Sensors (Basel), 2021 Feb 28;21(5).
    PMID: 33670872 DOI: 10.3390/s21051660
    Magnetoactive (MA) foam, with its tunable mechanical properties and magnetostriction, has the potential to be used for the development of soft sensor technology. However, researchers have found that its mechanical properties and magnetostriction are morphologically dependent, thereby limiting its capabilities for dexterous manipulation. Thus, in this work, MA foam was developed with additional capabilities for controlling its magnetostriction, normal force, storage modulus, shear stress and torque by manipulating the concentration of carbonyl iron particles (CIPs) and the magnetic field with regard to morphological changes. MA foams were prepared with three weight percentages of CIPs, namely, 35 wt.%, 55 wt.% and 75 wt.%, and three different modes, namely, zero shear, constant shear and various shears. The results showed that the MA foam with 75 wt.% of CIPs enhanced the normal force sensitivity and positive magnetostriction sensitivity by up to 97% and 85%, respectively. Moreover, the sensitivities of the storage modulus, torque and shear stress were 8.97 Pa/mT, 0.021 µN/mT, and 0.0096 Pa/mT, respectively. Meanwhile, the magnetic dipolar interaction between the CIPs was capable of changing the property of MA foam from a positive to a negative magnetostriction under various shear strains with a low loss of energy. Therefore, it is believed that this kind of highly sensitive MA foam can potentially be implemented in future soft sensor systems.
    Matched MeSH terms: Mechanical Phenomena
  11. Taufiqurrahman I, Ahmad A, Mustapha M, Lenggo Ginta T, Ady Farizan Haryoko L, Ahmed Shozib I
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673716 DOI: 10.3390/ma14051129
    Welding parameters obviously determine the joint quality during the resistance spot welding process. This study aimed to investigate the effect of welding current and electrode force on the heat input and the physical and mechanical properties of a SS316L and Ti6Al4V joint with an aluminum interlayer. The weld current values used in this study were 11, 12, and 13 kA, while the electrode force values were 3, 4, and 5 kN. Welding time and holding time remained constant at 30 cycles. The study revealed that, as the welding current and electrode force increased, the generated heat input increased significantly. The highest tensile-shear load was recorded at 8.71 kN using 11 kA of weld current and 3 kN of electrode force. The physical properties examined the formation of a brittle fracture and several weld defects on the high current welded joint. The increase in weld current also increased the weld diameter. The microstructure analysis revealed no phase transformation on the SS316L interface; instead, the significant grain growth occurred. The phase transformation has occurred on the Ti6Al4V interface. The intermetallic compound layer was also investigated in detail using the EDX (Energy Dispersive X-Ray) and XRD (X-Ray Diffraction) analyses. It was also found that both stainless steel and titanium alloy have their own fusion zone, which is indicated by the highest microhardness value.
    Matched MeSH terms: Mechanical Phenomena
  12. Ishak MI, Dobryden I, Martin Claesson P, Briscoe WH, Su B
    J Colloid Interface Sci, 2021 Feb 01;583:414-424.
    PMID: 33011410 DOI: 10.1016/j.jcis.2020.09.038
    Frictional and nanomechanical properties of nanostructured polymer surfaces are important to their technological and biomedical applications. In this work, poly(ethylene terephthalate) (PET) surfaces with a periodic distribution of well-defined nanopillars were fabricated through an anodization/embossing process. The apparent surface energy of the nanopillared surfaces was evaluated using the Fowkes acid-base approach, and the surface morphology was characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The normal and lateral forces between a silica microparticle and these surfaces were quantified using colloidal probe atomic force microscopy (CP-AFM). The friction-load relationship followed Amonton's first law, and the friction coefficient appeared to scale linearly with the nanopillar height. Furthermore, all the nanopillared surfaces showed pronounced frictional instabilities compared to the smooth sliding friction loop on the flat control. Performing the stick-slip amplitude coefficient (SSAC) analysis, we found a correlation between the frictional instabilities and the nanopillars density, pull-off force and work of adhesion. We have summarised the dependence of the nanotribological properties on such nanopillared surfaces on five relevant parameters, i.e. pull-off force fp, Amontons' friction coefficient μ, RMS roughness Rq, stick-slip amplitude friction coefficient SSAC, and work of adhesion between the substrate and water Wadh in a radar chart. Whilst demonstrating the complexity of the frictional behaviour of nanopillared polymer surfaces, our results show that analyses of multiparametric nanotribological properties of nanostructured surfaces should go beyond classic Amontons' laws, with the SSAC more representative of the frictional properties compared to the friction coefficient.
    Matched MeSH terms: Mechanical Phenomena
  13. R Koloor SS, Karimzadeh A, Abdullah MR, Petrů M, Yidris N, Sapuan SM, et al.
    Polymers (Basel), 2021 Jan 22;13(3).
    PMID: 33498984 DOI: 10.3390/polym13030344
    The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.
    Matched MeSH terms: Mechanical Phenomena
  14. Uwamahoro R, Sundaraj K, Subramaniam ID
    Biomed Eng Online, 2021 Jan 03;20(1):1.
    PMID: 33390158 DOI: 10.1186/s12938-020-00840-w
    This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
    Matched MeSH terms: Mechanical Phenomena*
  15. Yu L, Mei Q, Xiang L, Liu W, Mohamad NI, István B, et al.
    Front Bioeng Biotechnol, 2021;9:629809.
    PMID: 33842444 DOI: 10.3389/fbioe.2021.629809
    Ground reaction force (GRF) is a key metric in biomechanical research, including parameters of loading rate (LR), first impact peak, second impact peak, and transient between first and second impact peaks in heel strike runners. The GRFs vary over time during stance. This study was aimed to investigate the variances of GRFs in rearfoot striking runners across incremental speeds. Thirty female and male runners joined the running tests on the instrumented treadmill with speeds of 2.7, 3.0, 3.3, and 3.7 m/s. The discrete parameters of vertical average loading rate in the current study are consistent with the literature findings. The principal component analysis was modeled to investigate the main variances (95%) in the GRFs over stance. The females varied in the magnitude of braking and propulsive forces (PC1, 84.93%), whereas the male runners varied in the timing of propulsion (PC1, 53.38%). The female runners dominantly varied in the transient between the first and second peaks of vertical GRF (PC1, 36.52%) and LR (PC2, 33.76%), whereas the males variated in the LR and second peak of vertical GRF (PC1, 78.69%). Knowledge reported in the current study suggested the difference of the magnitude and patterns of GRF between male and female runners across different speeds. These findings may have implications for the prevention of sex-specific running-related injuries and could be integrated with wearable signals for the in-field prediction and estimation of impact loadings and GRFs.
    Matched MeSH terms: Biomechanical Phenomena; Mechanical Phenomena
  16. ALIATULNAJIHA AYUB, MOHD ASAMUDIN A RAHMAN
    MyJurnal
    A numerical study is conducted to determine the Vortex Induced Motion (VIM) effects on Deep-Draft Semi-Submersibles (DDSS). The VIM phenomena is a crucial problem that can cause severe impact on the fatigue life of mooring risers in DDSS. Therefore, a comprehensive numerical simulation is conducted using the Acusolve computational fluid dynamics (CFD) software. Five models of immersed columns with different aspect ratios (ie. 0.6, 0.8, 1.0, 1.2 and 1.4) are numerically investigated under two different incidence angles, which are 0° and 45°. The transverse and in-line vibration amplitude, amplitude of lift force coefficient and vortex shedding are analyzed. The numerical measurements are obtained to see the response of horizontal plane motions, which are transverse, in line and yaw motions. This study with detailed numerical results from parametric data will contribute future studies and the comparisons are made to demonstrate the capability of the present CFD approach.
    Matched MeSH terms: Mechanical Phenomena
  17. Ahmed T, Rahman NA, Alam MK
    Biomed Res Int, 2021;2021:6663683.
    PMID: 33959664 DOI: 10.1155/2021/6663683
    Objective: To compare the orthodontic bracket debonding force and assess the bracket failure pattern clinically between different teeth by a validated prototype debonding device. Materials and Method. Thirteen (13) patients at the end of comprehensive fixed orthodontic treatment, awaiting for bracket removal, were selected from the list. A total of 260 brackets from the central incisor to the second premolar in both jaws were debonded by a single clinician using a validated prototype debonding device equipped with a force sensitive resistor (FSR). Mean bracket debonding forces were specified to ten (10) groups of teeth. Following debonding, Intraoral microphotographs of the teeth were taken by the same clinician to assess the bracket failure pattern using a 4-point scale of adhesive remnant index (ARI). Statistical analysis included one-way ANOVA with post hoc Tukey HSD and independent sample t-test to compare in vivo bracket debonding force, Cohen's kappa (κ), and a nonparametric Kruskal-Wallis test for the reliability and the assessment of ARI scoring.

    Results: A significant difference (p < 0.001) of mean debonding force was found between different types of teeth in vivo. Clinically, ARI scores were not significantly different (p = 0.921) between different groups, but overall higher scores were predominant.

    Conclusion: Bracket debonding force should be measured on the same tooth from the same arch as the significant difference of mean debonding force exists between similar teeth of the upper and lower arches. The insignificant bracket failure pattern with higher ARI scores confirms less enamel damage irrespective of tooth types.

    Matched MeSH terms: Mechanical Phenomena
  18. Yeoh SY, Lubowa M, Tan TC, Murad M, Mat Easa A
    Food Chem, 2020 Dec 15;333:127425.
    PMID: 32683254 DOI: 10.1016/j.foodchem.2020.127425
    Zero-salted yellow alkaline noodles (YAN) were immersed in solutions of resistant starch HYLON™ VII (HC) or fruit coating Semperfresh™ (SC) containing a range of salt (NaCl) between 10 and 30% (w/v). The objective was to evaluate the effect of salt-coatings on the textural, handling, cooking, and sensory properties of YAN. Increasing salt in the coatings caused a reduction in optimum cooking time, cooking loss and increase in cooking yield. The mechanical and textural parameters, sensory hardness, springiness and overall sensory acceptability of the salt-coated noodles however decreased with increasing salt application. HC-Na10 and SC-Na10 showed the highest textural and mechanical parameters, sensory hardness and springiness. The differences in the parameters were attributed mainly to the water absorption properties of starch that was affected by salt application. Thus, the quality of salt-coated noodles was dependent mainly on the amounts of salt applied in the coatings rather than on the types of coatings used.
    Matched MeSH terms: Mechanical Phenomena*
  19. Chong PP, Panjavarnam P, Ahmad WNHW, Chan CK, Abbas AA, Merican AM, et al.
    Clin Biomech (Bristol, Avon), 2020 10;79:105178.
    PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178
    BACKGROUND: Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations.

    METHODS: The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay.

    FINDINGS: Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days.

    INTERPRETATION: The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.

    Matched MeSH terms: Biomechanical Phenomena; Mechanical Phenomena*
  20. Lin PC, Fang JC, Lin JW, Tran XV, Ching YC
    Materials (Basel), 2020 Sep 19;13(18).
    PMID: 32961763 DOI: 10.3390/ma13184170
    Effects of processing parameters on preheated (heat-assisted) clinching process to join aluminum alloy 5052-H32 (AA5052) and thermoplastic carbon-fiber-reinforced-plastic (TP-CFRP) sheets for cross-tension (CT) specimens were first studied. Preheating was critical since brittle TP-CFRP could be softened to avoid fracturing or cracking during clinching process. Four processing parameters, including punching force, die depth, heating mode, and heating temperature, were considered. Quasi-static tests and microscope observations were taken to evaluate AA5052/TP-CFRP clinch joints in CT specimens and determine appropriate processing parameters for fatigue tests. Finally, fatigue data and failure mode of clinch joints in CT specimens were obtained and discussed.
    Matched MeSH terms: Mechanical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links