Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Sababathy M, Ramanathan G, Abd Rahaman NY, Ramasamy R, Biau FJ, Qi Hao DL, et al.
    Regen Med, 2023 Dec;18(12):913-934.
    PMID: 38111999 DOI: 10.2217/rme-2023-0193
    This review explores the intricate relationship between acute respiratory distress syndrome (ARDS) and Type II diabetes mellitus (T2DM). It covers ARDS epidemiology, etiology and pathophysiology, along with current treatment trends and challenges. The lipopolysaccharides (LPS) role in ARDS and its association between non-communicable diseases and COVID-19 are discussed. The review highlights the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for ARDS and T2DM, emphasizing their immunomodulatory effects. This review also underlines how T2DM exacerbates ARDS pathophysiology and discusses the potential of hUC-MSCs in modulating immune responses. In conclusion, the review highlights the multidisciplinary approach to managing ARDS and T2DM, focusing on inflammation, oxidative stress and potential therapy of hUC-MSCs in the future.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  2. Ariffin SH, Manogaran T, Abidin IZ, Wahab RM, Senafi S
    Curr Stem Cell Res Ther, 2017;12(3):247-259.
    PMID: 27784228 DOI: 10.2174/1574888X11666161026145149
    Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  3. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al.
    J Orthop Res, 2011 Sep;29(9):1336-42.
    PMID: 21445989 DOI: 10.1002/jor.21413
    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p  0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  4. Deng D, Zhang P, Guo Y, Lim TO
    Ann Rheum Dis, 2017 Aug;76(8):1436-1439.
    PMID: 28478399 DOI: 10.1136/annrheumdis-2017-211073
    OBJECTIVE: We evaluate the efficacy of human umbilical cord-derived mesenchymal stem cell (hUC-MSC) for the treatment of lupus nephritis (LN). Previous reports showed hUC-MSC could have dramatic treatment effect.

    METHODS: Eighteen patients with WHO class III or IV LN were randomly assigned to hUC-MSC (dose 2×108 cells) or placebo. All patients received standard immunosuppressive treatment, which consisted of intravenous methylprednisolone and cyclophosphamide, followed by maintenance oral prednisolone and mycophenolate mofetil.

    RESULTS: Remission occurred in 9 of 12 patients (75%) in the hUC-MSC group and 5 of 6 patients (83%) in the placebo group. Remission was defined as stabilisation or improvement in renal function, reduction in urinary red cells and protein. A similar proportion of patients on hUC-MSC and placebo achieved complete remission. Improvements in serum albumin, complement, renal function, Systemic Lupus Erythematosus Disease Activity Index and British Isles Lupus Assessment Group scores were similar in both groups. One patient on placebo had a stroke and another had ascites. One patient on hUC-MSC had leucopenia, pneumonia and subcutaneous abscess and another died of severe pneumonia. The trial was abandoned after 18 patients were enrolled when it had become obvious it would not demonstrate a positive treatment effect.

    CONCLUSION: hUC-MSC has no apparent additional effect over and above standard immunosuppression.

    TRIAL REGISTRATION NUMBER: NCT01539902; Results.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  5. Lian J, Lin J, Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1298:149-166.
    PMID: 32424492 DOI: 10.1007/5584_2020_538
    Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality that usually results in the development of multiple organ dysfunction. The complex pathophysiology of ALI seems to provide a wide range of targets that offer numerous therapeutic options. However, despite extensive studies of ALI pathophysiology and treatment, no effective pharmacotherapy is available. Increasing evidence from both preclinical and clinical studies supports the preventive and therapeutic effects of mesenchymal stem cells (MSCs) for treating ALI. As cell-based therapy poses the risk of occlusion in microvasculature or unregulated growth, MSC-derived extracellular vesicles (MSC-EVs) have been extensively studied as a new therapeutic strategy for non-cell based therapy. It is widely accepted that the therapeutic properties of MSCs are derived from soluble factors with paracrine or endocrine effects, and EVs are among the most important paracrine or endocrine vehicles that can deliver various soluble factors with a similar phenotype as the parent cell. Therapeutic effects of MSCs have been reported for various delivery approaches, diverse doses, multiple origins, and different times of administration, and MSC-EVs treatment may include but is not limited to these choices. The mechanisms by which MSCs and MSC-EVs may contribute to ALI treatment remain elusive and need further exploration. This review provides an overview of preclinical studies that support the application of MSC-EVs for treating ALI, and it discusses emerging opportunities and their associated challenges.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation
  6. Totey S, Totey S, Pal R, Pal R
    J Stem Cells, 2009;4(2):105-21.
    PMID: 20232596
    There has been unprecedented interest in stem cell research mainly because of their true potential and hope that they offer to the patients as a cell therapy with the prospect to treat hitherto incurable diseases. Despite the worldwide interest and efforts that have been put in this research, major fundamental issues are still unresolved. Adult stem cells such as hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are already under clinical applications and there are several examples of plasticity and self-renewal where adult stem cells or their precursor cells can be re-programmed by extra cellular cues or internal cues to alter their character in a way that could have important application for cell therapy and regenerative medicine. From a clinical perspective, no other area of stem cell biology has been applied as successfully as has transplantation of bone marrow stem cells and cord blood stem cells for the treatment of hematological diseases. In the last few years, research in stem cell biology has expanded staggeringly, engendering new perspectives concerning the identity, origin, and full therapeutic potential of tissue-specific stem cells. This review will focus on the use of adult stem cells, its biology in the context of cell plasticity and their therapeutic potential for repair of different tissues and organs.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation
  7. Hidayah HN, Mazzre M, Ng AM, Ruszymah BH, Shalimar A
    Med J Malaysia, 2008 Jul;63 Suppl A:39-40.
    PMID: 19024973
    Bone marrow derived Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. Human MSCs were subjected to a series of treatment with a reducing agent, retinoic acid and a combination of trophic factors. This treated MSCs differentiated into Schwann cells were characterized in vitro via flow cytometry analysis and immunocytochemically. In contrast to untreated MSCs, differentiated MSCs expressed Schwann cell markers in vitro, as we confirmed by flow cytometry analysis and immunocytochemically. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration since it is difficult to grow Schwann cells in vitro.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  8. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  9. Yong KW, Choi JR, Wan Safwani WK
    Adv Exp Med Biol, 2016;951:99-110.
    PMID: 27837557
    Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  10. Alfaqeh H, Norhamdan MY, Chua KH, Chen HC, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:37-8.
    PMID: 19024972
    This study was to determine if autologous bone marrow mesenchymal stem cells (BMSCs) cultured in chondrogenic medium could repair surgically induced osteoarthritis. Sheep BMSCs were cultured in medium containing 5ng/ml TGFbeta3 + 50ng/ml IGF-1 for three weeks. The cultured cells were then suspended at density of 2x10(6) cell/ml and injected intraarticularly into the osteoarthritic knee joint. After six weeks, the distal head of the femur and the proximal tibial plateau were removed and stained with H&E. The results indicated that knee joints treated with autologous BMSCs cultured in chondrogenic medium showed clear evidence of articular cartilage regeneration in comparison with other groups.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  11. Mok PL, Leong CF, Cheong SK
    Malays J Pathol, 2013 Jun;35(1):17-32.
    PMID: 23817392 MyJurnal
    Mesenchymal stem cells (MSC) are multipotent, self-renewing cells that can be found mainly in the bone marrow, and other post-natal organs and tissues. The ease of isolation and expansion, together with the immunomodulatory properties and their capability to migrate to sites of inflammation and tumours make them a suitable candidate for therapeutic use in the clinical settings. We review here the cellular mechanisms underlying the emerging applications of MSC in various fields.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  12. Liau LL, Ruszymah BHI, Ng MH, Law JX
    Curr Res Transl Med, 2020 01;68(1):5-16.
    PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001
    Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  13. Sulong AF, Hassan NH, Hwei NM, Lokanathan Y, Naicker AS, Abdullah S, et al.
    Adv Clin Exp Med, 2014 May-Jun;23(3):353-62.
    PMID: 24979505
    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  14. Tong CK, Seow HF, Ramasamy R
    Med J Malaysia, 2008 Jul;63 Suppl A:77-8.
    PMID: 19024992
    The immune modulatory properties of mesenchymal stem cell (MSC) had brought a new insight in cell-based neotherapy. However, recent works of MSC are focused exclusively on bone marrow-derived MSC. We evaluated the immunogenicity of cord blood-derived MSC (CB-MSC) on T lymphocytes. Human peripheral blood mononuclear cells (PBMC) were prepared by density gradient separation and culture with the presence or absence of CB-MSC. PBMC were collected for activation analysis by flow cytometry at 24-, 48-, and 72- hours. The results showed that, CB-MSC does not stimulate nor inhibit T lymphocyte activation.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  15. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Mohr TJ, et al.
    Cytotherapy, 2010;12(1):31-7.
    PMID: 19878080 DOI: 10.3109/14653240903313966
    Bone marrow (BM) mesenchymal stromal cells (MSC) represent a novel therapy for severe heart failure with extensive myocardial scarring, especially when performed concurrently with conventional revascularization. However, stem cells are difficult to transport in culture media without risk of contamination, infection and reduced viability. We tested the feasibility and safety of off-site MSC culture and expansion with freeze-controlled cryopreservation and subsequent rapid thawing of cells immediately prior to implantation to treat severe dilated ischemic cardiomyopathy.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  16. Alsaeedi HA, Koh AE, Lam C, Rashid MBA, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111561.
    PMID: 31352000 DOI: 10.1016/j.jphotobiol.2019.111561
    Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina. Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various factors, including the choice of potential stem cell source that can show variability in plasticity as well as host tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3 × 105 DPSCs as well as a single systemic administration of NaIO3 (40 mg/kg). Electroretinography (ERG) was performed for the next two months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated retinas within 4 weeks, which was statistically significant (* P ≤ .05) compared to the control. Retinal thickness of the control was also found to be thinner (*** P ≤ .001). The DPSCs were found integrated in the photoreceptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem cell therapy due to its protective effects against retinal degeneration.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  17. Masnoon J, Ishaque A, Khan I, Salim A, Kabir N
    Cell Biochem Funct, 2023 Oct;41(7):833-844.
    PMID: 37814478 DOI: 10.1002/cbf.3833
    Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic β cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate β cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of β cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and β cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of βcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  18. Choi JR, Yong KW, Choi JY
    J Cell Physiol, 2018 Mar;233(3):1913-1928.
    PMID: 28542924 DOI: 10.1002/jcp.26018
    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  19. Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974904 DOI: 10.3390/ijms20071784
    Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links