Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Hong KW, Thinagaran Da, Gan HM, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6324.
    PMID: 23115161 DOI: 10.1128/JB.01608-12
    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
    Matched MeSH terms: Metals, Heavy/toxicity*
  2. Sharif R, Ghazali AR, Rajab NF, Haron H, Osman F
    Food Chem Toxicol, 2008 Jan;46(1):368-74.
    PMID: 17900779
    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, p<0.05). To detect DNA damage in a single cell, alkaline Comet Assay was used. None of the extracts caused DNA damage to the Chang liver cells at 62.5 microg/ml following 24 h incubation, as compared to the positive control, hydrogen peroxide (tail moment - 9.50+/-1.50; tail intensity - 30.50+/-2.50). Proximate analysis which was used for the evaluation of macronutrients in food showed that shrimp paste did not comply with the protein requirement (<25%) as in Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.
    Matched MeSH terms: Metals, Heavy/toxicity
  3. Yap CK, Ismail A, Omar H, Tan SG
    Environ Int, 2004 Feb;29(8):1097-104.
    PMID: 14680893
    Studies on toxicities and tolerances of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in the brown alga Isochrysis galbana and in the green-lipped mussel Perna viridis were conducted by short-term bioassays using endpoints growth production and mortality, respectively. The 5-day EC(50) and 24-h LC(50) of these heavy metals were determined in the brown alga and mussel, respectively. The EC(50) values calculated for the alga were 0.74 mg/l for Cd, 0.91 mg/l for Cu, 1.40 mg/l for Pb and 0.60 mg/l for Zn. The LC(50) values for the mussels were 1.53 mg/l for Cd, 0.25 mg/l for Cu, 4.12 mg/l for Pb and 3.20 mg/l for Zn. These LC(50) values were within the concentration ranges as reported by other authors who used P. viridis as the test organism. Based on these EC(50) and LC(50) values, the alga was most sensitive to Zn, followed by Cd, Cu and Pb while the mussel was most sensitive to Cu, followed by Cd, Zn and Pb. Differences in the trophic levels, metal handling strategies, biology and ecology of the primary producer (brown alga) and the primary consumer (mussel) are believed to be the plausible causes for the different toxicities and tolerances of the metals studied.
    Matched MeSH terms: Metals, Heavy/toxicity*
  4. Omidvar V, Abdullah SN, Izadfard A, Ho CL, Mahmood M
    Planta, 2010 Sep;232(4):925-36.
    PMID: 20635097 DOI: 10.1007/s00425-010-1220-z
    The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5' deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5' untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) -953 to -619 and -420 to -256 regions. Fine-tune deletion of the -619 to -420 nt region led to the identification of a 21-bp negative regulatory sequence in the -598 to -577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu(2+)) induced the activity of the promoter and its 5' deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu(2+) than its 5' deletions, while in leaves, the -420 nt fragment was the most inducible by ABA and Cu(2+). These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.
    Matched MeSH terms: Metals, Heavy/toxicity
  5. Ikonomopoulou MP, Olszowy H, Hodge M, Bradley AJ
    PMID: 19247670 DOI: 10.1007/s00360-009-0347-3
    In this study on green turtles, Chelonia mydas, from Peninsular Malaysia, the effect of selected environmental toxicants was examined in vitro. Emphasis was placed on purported hormone-mimicking chemicals such as dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, dieldrin, lead, zinc and copper. Five concentrations were used: high (1 mg/L), medium (10(-1) mg/L), low (10(-2) mg/L), very low (10(-6) mg/L) and control (diluted carrier solvent but no toxicants). The results suggest that environmental pesticides and heavy metals may significantly alter the binding of steroids [i.e. testosterone (T) and oestradiol] to the plasma proteins in vitro. Competition studies showed that only Cu competed for binding sites with testosterone in the plasma collected from nesting C. mydas. Dieldrin and all heavy metals competed with oestradiol for binding sites. Furthermore, testosterone binding affinity was affected at various DDT concentrations and was hypothesised that DDT in vivo may act to inhibit steroid-protein interactions in nesting C. mydas. Although the precise molecular mechanism is yet to be described, DDT could have an effect upon the protein conformation thus affecting T binding (e.g. the T binding site on the steroid hormone binding protein molecule).
    Matched MeSH terms: Metals, Heavy/toxicity*
  6. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jan;80(1):63-7.
    PMID: 18058048
    A study was conducted on the long term effects of nine heavy metals on the Chironomus plumosus and Culicoides furens larvae. This study tested the effect of the heavy metals on several generations of the larvae to observe the formation of increased hardiness against pollutants present within the aquatic habitat. From this study it was observed that susceptibility or sensitivity to heavy metals decreased with LC50 values becoming larger indicating a decreased toxicity level. Significant variations (p < 0.05) were observed between first generation and third generation culicoides for all metals and at all concentrations. Variations between third and fourth generation culicoides were also significantly different (p < 0.05) with the exception of chromium at 25 degrees C and nickel and lead at every temperature range group. The variation between all generations 4, 5 and 6 was found to be insignificant (p > 0.05). This would indicate that metal tolerance would have occurred in these generations and the effect of metals was less toxic to the culicoides. Generation 9 was found to have LC50 values (p > 0.05) the same as the LC50 values obtained in third generation culicoides. Thus it would appear that heavy metal resistance was developed when the organisms were exposed to prolonged exposure of the heavy metals but was lost when the organisms were bred in non-contaminated water.
    Matched MeSH terms: Metals, Heavy/toxicity*
  7. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
    Matched MeSH terms: Metals, Heavy/toxicity
  8. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2011 Jul;27(6):523-30.
    PMID: 21343224 DOI: 10.1177/0748233710391993
    Adult Macrobrachium lanchesteri were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn) and lead (Pb) concentrations. Mortality was assessed and median lethal times (LT₅₀) and concentrations (LC₅₀) were calculated. At the end of the 4-day period, live prawns were used to determine bioconcentration of the metals. LT₅₀ and LC₅₀ increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC₅₀s for 96 hours for Cu, Cd, Zn and Pb were 32.3, 7.0, 525.1 and 35.0 µg/L, respectively. Cu, Cd, Zn and Pb bioconcentration in M. lanchesteri increases with exposure to increasing concentrations and Cd was the most toxic to M. lanchesteri, followed by Pb, Cu and Zn. Comparison of LC₅₀ values for metals for this species with those for other freshwater crustacean organisms reveals that M. lanchesteri is equally or more sensitive to heavy metals than most other tested crustaceans.
    Matched MeSH terms: Metals, Heavy/toxicity*
  9. Saidur MR, Aziz AR, Basirun WJ
    Biosens Bioelectron, 2017 Apr 15;90:125-139.
    PMID: 27886599 DOI: 10.1016/j.bios.2016.11.039
    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).
    Matched MeSH terms: Metals, Heavy/toxicity
  10. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM
    Bioresour Technol, 2008 Sep;99(13):5786-92.
    PMID: 18023577
    In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.
    Matched MeSH terms: Metals, Heavy/toxicity
  11. Shing WL, Heng LY, Surif S
    Sensors (Basel), 2013;13(5):6394-404.
    PMID: 23673679 DOI: 10.3390/s130506394
    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 µg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 µg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 µg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability.
    Matched MeSH terms: Metals, Heavy/toxicity
  12. Fauziah SH, Emenike CU, Agamuthu P
    Waste Manag Res, 2013 Oct;31(10 Suppl):75-80.
    PMID: 23800442 DOI: 10.1177/0734242X13492840
    Pollutants put great stress on the environment, especially the aquatic ecosystem; therefore, the ease with which pollutants migrate in water is a subject of global concern. In this study, leachate from landfill that was analyzed with the objective of understanding the potential impact to the environment was tested on Pangasius sutchi. Heavy metals available at various concentrations in raw leachate samples of both closed and active landfills necessitated the determination of their degree of bioaccumulation in this fish species in order to enrich the risk data on toxicity of effluents. Zinc (3.2 µg g(-1)), iron (2.1 µg g(-1)) and chromium (0.24 µg g(-1)) detected in the fish within 96 h of acute exposure is of concern. A histopathology test on excised liver of P. sutchi indicated cellular disruption from normal stain. Heterogeneous effluents like leachate may affect not only groundwater but can endanger aquatic ecosystems, especially in some regions where improper waste disposal and treatment allow the flow of leachate into surface water courses. Though metals might be beneficial to organisms, the extent at which they can accumulate in leachate-exposed fish is a risk and can initiate metal toxicity in aquatic life.
    Matched MeSH terms: Metals, Heavy/toxicity*
  13. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
    Matched MeSH terms: Metals, Heavy/toxicity*
  14. Rahim MB, Syed MA, Shukor MY
    J Basic Microbiol, 2012 Oct;52(5):573-81.
    PMID: 22144174 DOI: 10.1002/jobm.201100116
    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide.
    Matched MeSH terms: Metals, Heavy/toxicity
  15. Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jul;54:353-63.
    PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031
    This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P 
    Matched MeSH terms: Metals, Heavy/toxicity
  16. Abdullah N, Tair R, Abdullah MH
    Pak J Biol Sci, 2014 Jan 01;17(1):62-7.
    PMID: 24783779
    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis.
    Matched MeSH terms: Metals, Heavy/toxicity*
  17. Rahman MS, Sathasivam KV
    Biomed Res Int, 2015;2015:126298.
    PMID: 26295032 DOI: 10.1155/2015/126298
    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.
    Matched MeSH terms: Metals, Heavy/toxicity
  18. Bristy MS, Sarker KK, Baki MA, Quraishi SB, Hossain MM, Islam A, et al.
    Environ Toxicol Pharmacol, 2021 Aug;86:103666.
    PMID: 33895355 DOI: 10.1016/j.etap.2021.103666
    Metal contaminations in commercial fish have become a great public health concern worldwide including Bangladesh. The current study was conducted to provide preliminary evidence of nine metals in three commercially significant fish namely Pampus argenteus, Sardinella longiceps and Tenualosa ilisha collected from four coastal stations- Kuakata, Pathorghata, Cox's Bazar, and Pirojpur, and eight stations of five rivers- Padma, Meghna, Jamuna, Katcha, and Nobogonga in Bangladesh. High magnitudes of Pb (0.74-4.59 mg/kg ww), Cd (0.07-0.24 mg/kg ww), and Mn (0.45-2.03 mg/kg ww) were recorded in the sampling stations that exceeded the maximum permissible limits (MPL) proposed by different recognized organizations. Significant mean differences of metal concentrations were observed (p 
    Matched MeSH terms: Metals, Heavy/toxicity
  19. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
    Matched MeSH terms: Metals, Heavy/toxicity
  20. Azizi S, Mahdavi Shahri M, Mohamad R
    Molecules, 2017 Jun 08;22(6).
    PMID: 28594362 DOI: 10.3390/molecules22060831
    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.
    Matched MeSH terms: Metals, Heavy/toxicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links