Displaying publications 1 - 20 of 141 in total

Abstract:
Sort:
  1. West CE, Perrin DD, Shaw DC, Heap GH, Soemanto
    PMID: 4274568
    Matched MeSH terms: Methane/analysis; Methane/poisoning; Methane/urine
  2. Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1791-802.
    PMID: 11605622
    A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
    Matched MeSH terms: Methane/metabolism
  3. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S
    Chemosphere, 2005 Jun;59(11):1575-81.
    PMID: 15894045
    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.
    Matched MeSH terms: Methane/analysis*; Methane/metabolism
  4. Yacob S, Ali Hassan M, Shirai Y, Wakisaka M, Subash S
    Sci Total Environ, 2006 Jul 31;366(1):187-96.
    PMID: 16125215
    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.
    Matched MeSH terms: Methane/analysis*; Methane/metabolism
  5. Khairul Anuar Mohamad, Okuyama, Naoki, Razak Mohd. Ali Lee
    MyJurnal
    An experimental study of the field emission from nitrogen doped Diamond-Like-Carbon (DLC) thin films prepared by plasma Chemical Vapor Deposition (CVD) was carried out for the purpose of investigating the characteristic of field electron emission from the surface of nitrogen doped DLC thin film. Thin DLC film was deposited on silicon using the plasma CVD method, from a mixture of Methane (CH4), Helium (He) and Nitrogen (N2) at room temperature. Emission current was measured while high volume of voltage was applied between the cathode-anode diode structures. Barrier height was obtained by current density-electric field (J-E) characteristic in the relation of Fowler-Nordheim equation. The value of barrier height in range of 0.03eV to 0.06eV was obtained and considered as low barrier.
    Matched MeSH terms: Methane
  6. Pedersen A
    Waste Manag Res, 2008 Feb;26(1):111-4.
    PMID: 18338708
    During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex 1 countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean development mechanism (CDM) allows Annex 1 countries to develop projects, which contribute to emission reduction, in non-Annex 1 (developing) countries. Currently, two projects have been corrected due to request for review and there is one project for which review is requested. Two projects have been rejected by the Executive Board. The broad knowledge of CDM in Malaysia and the number of successful projects are partly due to the well-functioning CDM institutional framework in Malaysia. As an illustration this article focuses on a Malaysian-Danish project and describes the implementation of CDM in Malaysia and refers to this specific project. The project was registered with the CDM Executive Board in May 2007 and is a methane avoidance project in which methane is captured from a landfill and used to generate electricity.
    Matched MeSH terms: Methane/metabolism*
  7. Chai, S.P., Zein, S.H.S., Mohamed, A.R.
    ASM Science Journal, 2008;2(1):57-64.
    MyJurnal
    Since the discovery of carbon nanotubes (CNTs) in 1991, a fundamental question still remained on how to control morphologically the synthesis of CNTs. This task has always been a challenge. In this paper, we report the results that we have published previously with the aim of sharing the possible controlled synthesis approach via this novel production method. Findings demonstrated that various CNTs could be synthesized by using specially developed supported catalysts from the catalytic decomposition of methane. These synthesized CNTs include carbon nanofibres, single-walled and multi-walled CNTs, Y-junction CNTs and CNTs with special morphologies. It was also revealed that catalyst composition and reaction parameters played an important role in controlling the morphology and type of CNTs formed. The synthesis of CNTs with various morphologies is important because this can enrich the nanostructures of the carbon family. This finding also provides useful data for better understanding of the parameters that govern the growth mechanism of CNTs which may be required in the near future for enhanced controlled synthesis of CNTs.
    Matched MeSH terms: Methane
  8. Kamarudin, K.S.N., Chieng, Y.Y., Hamdan, H., Mat, H.
    ASM Science Journal, 2008;2(1):35-44.
    MyJurnal
    The importance of zeolite surface area and pore volume in adsorption processes has been much reported in literature. In addition to that, structural framework and pore network system may also influence the adsorption capacity and selectivity of methane on zeolite. This paper discusses the characteristics of methane adsorption based on several physical properties of the adsorbents such as surface area, pore volume, pore network system and its interaction with adsorbate. The study, using FTIR spectroscopy showed that the adsorbed methane at room temperature was detected in the FTIR region between 3200 cm–1 – 1200 cm–1. Based on the physical properties of the adsorbents and the FTIR spectra of adsorbed methane, the surface area was not the only factor that determined methane adsorption; in fact the type of pore network system of the adsorbent also affected the interaction, thus affecting the adsorption of methane in zeolite.
    Matched MeSH terms: Methane
  9. Rozidawati Awang, Saadah A. Rahman
    Sains Malaysiana, 2008;37:233-237.
    A series of hydrogenated amorphous carbon (a-C:H) thin films were deposited using home-built direct-current (DC) plasma enhanced chemical vapour deposition (PECVD) system. In this present study, the a-C:H thin films were deposited using pure methane (CH4) gas diluted either with hydrogen (H) or helium (He). The effects of hydrogen and helium dilution on the photoluminescence (PL) properties and optical band gap (E04) were studied. The dependence of PL properties and optical energy gap on the film thickness has also been investigated. The characterization techniques used were optical transmission and photoluminescence spectroscopies. The sp2 cluster sizes were determined from Raman spectra are in the range of 5 to 7 nm. Hydrogen and helium dilution of methane strongly influences the PL efficiency of the a-C:H films. The PL efficiency are enhanced with increase in film thickness for a-C:H films prepared both from H and He diluted CH4. The optical energy gap of these films decreases with increase in H or He dilution and film thickness.
    Matched MeSH terms: Methane
  10. Poh PE, Chong MF
    Bioresour Technol, 2009 Jan;100(1):1-9.
    PMID: 18657414 DOI: 10.1016/j.biortech.2008.06.022
    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.
    Matched MeSH terms: Methane/metabolism*
  11. Nor Aishah Saidina Amin, Soon, Ee Peng
    MyJurnal
    Thermodynamic chemical equilibrium analysis using, total Gibbs energy minimization method, was carried out for methane oxidation to higher hydrocarbons. For a large methane conversion and a high selectivity to higher hydrocarbons, the system temperature and oxygen concentration played a vital role, whereas, the system pressure only slightly influenced the two variables. Numerical results showed that the conversion of methane increased with the concentration of oxygen and reaction temperature, but it decreased with pressure. Nevertheless, the presence of oxygen suppressed the formation of higher hydrocarbons which mostly consisted of aromatics, but enhanced the formation of hydrogen. As the system pressure increased, the aromatics, olefins and hydrogen yields diminished, but the paraffin yield improved. Carbon monoxide seemed to be the major oxygen-containing equilibrium product from methane oxidation, whilst almost no H2O, CH3OH and HCOH were detected although traces amount of carbon dioxide were formed at relatively lower temperature and higher pressure. The total Gibbs energy minimization method is useful to theoretically analyze the feasibility of methane conversion to higher hydrocarbons and syngas at the selected temperature and pressure.
    Matched MeSH terms: Methane
  12. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
    Matched MeSH terms: Methane
  13. Kamarudin, K.S.N., Chieng, Y.Y., Hamdan, H., Mat, H.
    ASM Science Journal, 2010;4(1):29-40.
    MyJurnal
    Ordered microporous NaY zeolite and mesoporous copper oxide are high performance material as catalysts and adsorbents. The copper oxide-NaY zeolite modification in combination of their physicochemical properties could provide excellent opportunities for the creation of new gas adsorbents. In this study, modified NaY zeolite properties and methane adsorptive characteristics were investigated by dispersing copper oxide onto the NaY zeolite structure using the thermal dispersion method. The structures of the copper oxide modified zeolites were characterized by powder X-ray diffraction and Micromeritics ASAP 2000, while the methane adsorption characteristics were analyzed using a thermogravimetric analyzer. The results revealed that types of copper oxide, copper oxide loading concentration, calcination temperature and calcination time greatly affected the modified zeolite structure and gas methane adsorption characteristics.
    Matched MeSH terms: Methane
  14. Tan HY, Sieo CC, Lee CM, Abdullah N, Liang JB, Ho YW
    J Microbiol, 2011 Jun;49(3):492-8.
    PMID: 21717338 DOI: 10.1007/s12275-011-0319-7
    Molecular diversity of rumen archaeal populations from bovine rumen fluid incubated with or without condensed tannins was investigated using 16S rRNA gene libraries. The predominant order of rumen archaea in the 16S rRNA gene libraries of the control and condensed tannins treatment was found to belong to a novel group of rumen archaea that is distantly related to the order Thermoplasmatales, with 59.5% (15 phylotypes) and 81.43% (21 phylotypes) of the total clones from the control and treatment clone libraries, respectively. The 16S rRNA gene library of the control was found to have higher proportions of methanogens from the orders Methanomicrobiales (32%) and Methanobacteriales (8.5%) as compared to those found in the condensed tannins treatment clone library in both orders (16.88% and 1.68% respectively). The phylotype distributed in the order Methanosarcinales was only found in the control clone library. The study indicated that condensed tannins could alter the diversity of bovine rumen methanogens.
    Matched MeSH terms: Methane/metabolism*
  15. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
    Matched MeSH terms: Methane/analysis*
  16. Yuzir A, Chelliapan S, Sallis PJ
    Bioresour Technol, 2011 Oct;102(20):9456-61.
    PMID: 21862323 DOI: 10.1016/j.biortech.2011.07.083
    The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.
    Matched MeSH terms: Methane/biosynthesis
  17. Fan MS, Abdullah AZ, Bhatia S
    ChemSusChem, 2011 Nov 18;4(11):1643-53.
    PMID: 22191096
    A series of bimetallic catalysts containing nickel supported over MgO-ZrO2 were tested for activity in the dry reforming of carbon dioxide. A nickel-cobalt bimetallic catalyst gave the best performance in terms of conversion and coke resistance from a range of Ni-X bimetallic catalysts, X=Ca, K, Ba, La, and Ce. The nitrogen-adsorption and hydrogen-chemisorption studies showed the Ni-Co bimetallic supported catalyst to have good surface area with high metal dispersion. This contributed to the high catalytic activity, in terms of conversion activity and stability of the catalyst, at an equimolar methane/carbon dioxide feed ratio. The kinetics of methane dry reforming are studied in a fixed-bed reactor over an Ni-Co bimetallic catalyst in the temperature range 700-800 °C by varying the partial pressures of CH4 and CO2. The experimental data were analyzed based on the proposed reaction mechanism using the Langmuir-Hinshelwood kinetic model. The activation energies for methane and carbon dioxide consumption were estimated at 52.9 and 48.1 kJ mol(-1), respectively. The lower value of CO2 activation energy compared to the activation energy of CH4 indicated a higher reaction rate of CO2, which owes to the strong basicity of nanocrystalline support, MgO-ZrO2.
    Matched MeSH terms: Methane/chemistry
  18. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3196-209.
    PMID: 22006962 DOI: 10.1098/rstb.2011.0055
    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
    Matched MeSH terms: Methane/chemistry
  19. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Methane/biosynthesis*
  20. Suratman, S., Tawnie, I., Sefei, A.
    ASM Science Journal, 2011;5(2):101-107.
    MyJurnal
    A study to determine the impact of leachate from operating and closed landfills into the surface water and groundwater systems in the state of Selangor was conducted in the year 2009. Groundwater was a major source of water for various uses in Selangor, Malaysia and was especially important for industrial purposes. The presence of high numbers of landfill sites was seen to have increased the risk of groundwater contamination. There were 20 landfill sites in the state of Selangor and seven of them were still operating and 13 closed. The landfills are classified into four categories, which were: (a) landfills operating at critical stages without controls to prevent pollution into the environment; (b) open dumpsites that have the capacity to continue to accept waste but needed to be upgraded to manage leachate and gas; (c) landfills that were closed but no safety closure plan was carried out; and (d) engineered landfills with up to date technologies. As most of the landfills were built prior to 1989, they were not subjected to the Environmental Impact Assessment requirements, hence, they were being poorly managed and were badly sited. The non-engineered sites had no proper pollution controls such as cover materials, liner materials, groundwater monitoring wells, leachate collection ponds and treatment, and methane gas collection pipes. This study revealed that the surface water and groundwater at and nearby the landfill sites were contaminated at various levels due to the landfill sites and operation. A comparison between the current quality of surface water and groundwater with their respective standards and background levels was carried out to survey the trend of the contamination. However, the limited financial resources hindered a very thorough investigation and restricted the number of samples collected and parameters analysed.
    Matched MeSH terms: Methane
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links