Displaying publications 1 - 20 of 141 in total

Abstract:
Sort:
  1. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
    Matched MeSH terms: Methane/metabolism
  2. Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, et al.
    J Environ Manage, 2023 Nov 15;346:119031.
    PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031
    This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
    Matched MeSH terms: Methane
  3. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
    Matched MeSH terms: Methane/metabolism
  4. Jovani-Sancho AJ, O'Reilly P, Anshari G, Chong XY, Crout N, Evans CD, et al.
    Glob Chang Biol, 2023 Aug;29(15):4279-4297.
    PMID: 37100767 DOI: 10.1111/gcb.16747
    There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1  year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1  year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.
    Matched MeSH terms: Methane/analysis
  5. Qureshi F, Yusuf M, Ibrahim H, Kamyab H, Chelliapan S, Pham CQ, et al.
    Environ Res, 2023 Jul 15;229:115963.
    PMID: 37105287 DOI: 10.1016/j.envres.2023.115963
    Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
    Matched MeSH terms: Methane
  6. Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, et al.
    Bioprocess Biosyst Eng, 2023 Jul;46(7):995-1009.
    PMID: 37160769 DOI: 10.1007/s00449-023-02879-0
    Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
    Matched MeSH terms: Methane/metabolism
  7. Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, et al.
    Bioresour Technol, 2023 Apr;374:128746.
    PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746
    The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3-0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
    Matched MeSH terms: Methane
  8. Moideen SNF, Krishnan S, Li YY, Hassim MH, Kamyab H, Nasrullah M, et al.
    Chemosphere, 2023 Mar;317:137923.
    PMID: 36682635 DOI: 10.1016/j.chemosphere.2023.137923
    An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.
    Matched MeSH terms: Methane
  9. Busman NA, Melling L, Goh KJ, Imran Y, Sangok FE, Watanabe A
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159973.
    PMID: 36347298 DOI: 10.1016/j.scitotenv.2022.159973
    Information on temporal and spatial variations in soil greenhouse gas (GHG) fluxes from tropical peat forests is essential to predict the influence of climate change and estimate the effects of land use on global warming and the carbon (C) cycle. To obtain such basic information, soil carbon dioxide (CO2) and methane (CH4) fluxes, together with soil physicochemical properties and environmental variables, were measured at three major forest types in the Maludam National Park, Sarawak, Malaysia, for eight years, and their relationships were analyzed. Annual soil CO2 fluxes ranged from 860 to 1450 g C m⁻2 yr⁻1 without overall significant differences between the three forest sites, while soil CH4 fluxes, 1.2-10.8 g C m⁻2 yr⁻1, differed. Differences in GHG fluxes between dry and rainy seasons were not necessarily significant, corresponding to the extent of seasonal variation in groundwater level (GWL). The lack of significant differences in soil CO2 fluxes between the three sites could be attributed to set-off between the negative and positive effects of the decomposability of soil organic matter as estimated by pyrophosphate solubility index (PSI) and GWL. The impact of El-Niño on annual CO2 flux also varied between the sites. The variation in soil CH4 fluxes from the three sites was enhanced by variations in temperature, GWL, PSI, and soil iron (Fe) content. A positive correlation was observed between the annual CH4 flux and GWL at only one site, and the influence of soil properties was more pronounced at the site with the lowest GWL and the highest PSI. Variation in annual CH4 fluxes was controlled more strongly by temperature where GWL was the highest and GWL and plant growth fluctuations were the least. Inter-annual variations in soil CO2 and CH4 fluxes confirmed the importance of long-term monitoring of these at multiple sites supporting different forest types.
    Matched MeSH terms: Methane/analysis
  10. Almashwali AA, Khan MS, Lal B, Jin QC, Sabil KM, Khor SF
    Chemosphere, 2023 Jan;312(Pt 2):137325.
    PMID: 36423723 DOI: 10.1016/j.chemosphere.2022.137325
    This experimental study evaluates the inhibition performance of kinetic hydrates inhibitors (KHIs) of three amino acids, namely: glycine, proline, and alanine. It includes the performance comparison with the conventional inhibitor i.e., polyvinyl pyrrolidine (PVP) on methane (CH4) hydrate in oil systems in two different systems, i.e., deionized and brine water systems. The experiments were conducted in a high-pressure hydrate reactor replicating subsea pipeline conditions, i.e., the temperature of 274 K, pressure 8 MPa, and concentration of 1 wt%, by applying the isochoric cooling technique. The formation kinetics results suggest that all the studied amino acids effectively worked as kinetic inhibitors by potentially delaying CH4 hydrate formations due to their steric hindrance abilities. The interesting phenomenon was observed that the different studied amino acids behave differently in the brine-oil and deionized water-oil systems due to their side chain interaction. In a deionized water-oil system, glycine gives the highest inhibition performance by reducing the hydrate formation risk. On the contrary, in the brine-oil system, proline showed a significant inhibition effect. It should be noted that both glycine and proline were giving almost similar inhibition performance compared to the conventional hydrate inhibitor PVP, however glycine and proline significantly reduced CH4 consumption into hydrate due to their high surface active under CH4 conditions, which strengths the surface tension of the liquid/CH4 interface. Furthermore, according to the findings, it shows that increased side alkyl chain lengths of amino acids increase the efficacy of their kinetic hydration inhibition performance due to better surface adsorption abilities. The amino acids' ability to suppress growth is also linked strongly with hydrophobicity and alkyl side chain length. The findings of this study contribute significantly to current efforts to limit gas hydrate formation in offshore pipelines, particularly in oil-dominant pipelines.
    Matched MeSH terms: Methane
  11. Ho A, Zuan ATK, Mendes LW, Lee HJ, Zulkeflee Z, van Dijk H, et al.
    Microb Ecol, 2022 Nov;84(4):1154-1165.
    PMID: 34716776 DOI: 10.1007/s00248-021-01908-3
    Oil palm (OP) plantations are gradually replacing tropical rainforest in Malaysia, one of the largest palm oil producers globally. Conversion of lands to OP plantations has been associated with compositional shifts of the microbial community, with consequences on the greenhouse gas (GHG) emissions. While the impact of the change in land use has recently been investigated for microorganisms involved in N2O emission, the response of the aerobic methanotrophs to OP agriculture remains to be determined. Here, we monitored the bacterial community composition, focusing on the aerobic methanotrophs, in OP agricultural soils since 2012, 2006, and 1993, as well as in a tropical rainforest, in 2019 and 2020. High-affinity methane uptake was confirmed, showing significantly lower rates in the OP plantations than in the tropical rainforest, but values increased with continuous OP agriculture. The bacterial, including the methanotrophic community composition, was modified with ongoing OP agriculture. The methanotrophic community composition was predominantly composed of unclassified methanotrophs, with the canonical (Methylocystis) and putative methanotrophs thought to catalyze high-affinity methane oxidation present at higher relative abundance in the oldest OP plantation. Results suggest that the methanotrophic community was relatively more stable within each site, exhibiting less temporal variations than the total bacterial community. Uncharacteristically, a 16S rRNA gene-based co-occurrence network analysis revealed a more complex and connected community in the OP agricultural soil, which may influence the resilience of the bacterial community to disturbances. Overall, we provide a first insight into the ecology and role of the aerobic methanotrophs as a methane sink in OP agricultural soils.
    Matched MeSH terms: Methane
  12. Isa MH, Bashir MJK, Wong LP
    Environ Sci Pollut Res Int, 2022 Jun;29(29):44779-44793.
    PMID: 35138542 DOI: 10.1007/s11356-022-19022-3
    In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.
    Matched MeSH terms: Methane
  13. Tawfik A, Bakr MH, Nasr M, Haider J, Mesfer MKA, Lim H, et al.
    Chemosphere, 2022 Feb;289:133166.
    PMID: 34875288 DOI: 10.1016/j.chemosphere.2021.133166
    The sustainable application of an up-flow anaerobic baffled reactor (UABR) to treat real paper and cardboard industrial effluent (PCIE) containing bronopol (2-bromo-2-nitropropan-1, 3-diol) was investigated. At a hydraulic retention time (HRT) of 11.7 h and a bronopol concentration of 7.0 mg L-1, the removal efficiencies of total chemical oxygen demand (CODtotal), CODsoluble, CODparticulate, total suspended solids (TSS), volatile suspended solids (VSS), carbohydrates, and proteins were 55.3 ± 5.2%, 26.8 ± 2.3%, 94.4 ± 4.6%, 89.4 ± 2.6%, 84.5 ± 3.2%, 72.1 ± 1.8%, and 22.4 ± 1.8%, respectively. The conversion of complex organics (e.g., carbohydrates and proteins) into bio-methane (CH4) was assisted via enzyme activities of, in U (100 mL)-1, α-amylase (224-270), α-xylanase (171-188), carboxymethyl cellulase (CM-cellulase) (146-187), polygalacturonase (56-126), and protease (67,000-75300). The acidogenic condition was dominant at a short HRT of 2.9 h, where methane yield dropped by 32.5%. Under this condition, the growth of methanogenic bacteria could be inhibited by volatile fatty acids (VFA) accumulation. The analysis of Fourier-transform infrared (FTIR) spectra detected peaks relevant to methylene and nitro groups in the sludge samples, suggesting that entrapment/adsorption by the sludge bed could be a major mechanism for removing bronopol. The economic feasibility of UABR, as proposed to receive 100 m3 d-1 of PCIE, showed a payback period (profits from environmental benefits, biogas recovery, and carbon credit) of 7.6 yr. The study outcomes showed a high connection to the environmental-, economic-, and social-related sustainable development goals (SDGs).
    Matched MeSH terms: Methane
  14. Santos JS, Fereidooni M, Marquez V, Arumugam M, Tahir M, Praserthdam S, et al.
    Chemosphere, 2022 Feb;289:133170.
    PMID: 34875298 DOI: 10.1016/j.chemosphere.2021.133170
    This study investigates the facile fabrication of interfacial defects assisted amorphous TiO2 nanotubes arrays (am-TNTA) for promoting gas-phase CO2 photoreduction to methane. The am-TNTA catalyst was fabricated via a one-step synthesis, without heat treatment, by anodization of Titanium in Ethylene glycol-based electrolyte in a shorter anodizing time. The samples presented a TiO2 nanostructured array with a nanotubular diameter of 100 ± 10 nm, a wall thickness of 26 ± 5 nm, and length of 3.7 ± 0.3 μm, resulting in a specific surface of 0.75 m2 g. The am-TNTA presented prolonged chemical stability, a high exposed surface area, and a large number of surface traps that can reduce the recombination of the charge carriers. The am-TNTA showed promising photoactivity when tested in the CO2 reduction reaction with water under UV irradiation with a methane production rate of 14.0 μmol gcat-1 h-1 for a pure TiO2 material without any modification procedure. This enhanced photocatalytic activity can be explained in terms of surface defects of the amorphous structure, mainly OH groups that can act as electron traps for increasing the electron lifetime. The CO2 interacts directly with those traps, forming carbonate species, which favors the catalytic conversion to methane. The am-TNTA also exhibited a high stability during six reaction cycles. The photocatalytic activity, the significantly reduced time for synthesis, and high stability for continuous CH4 production make this nanomaterial a potential candidate for a sustainable CO2 reduction process and can be employed for other energy applications.
    Matched MeSH terms: Methane
  15. Foong SY, Liew RK, Lee CL, Tan WP, Peng W, Sonne C, et al.
    J Hazard Mater, 2022 01 05;421:126774.
    PMID: 34364214 DOI: 10.1016/j.jhazmat.2021.126774
    Waste furniture boards (WFBs) contain hazardous formaldehyde and volatile organic compounds when left unmanaged or improperly disposed through landfilling and open burning. In this study, pyrolysis was examined as a disposal and recovery approach to convert three types of WFBs (i.e., particleboard, plywood, and fiberboard) into value-added chemicals using thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS). TG-FTIR analysis shows that pyrolysis performed at an optimum temperature of 250-550 °C produced volatile products mainly consisting of carbon dioxide, carbon monoxide, and light hydrocarbons, such as methane. Py-GC/MS shows that pyrolysis at different final temperatures and heating rates recovered mainly phenols (25.9-54.7%) for potential use as additives in gasoline, colorants, and food. The calorific value of WFBs ranged from 16 to 18 MJ/kg but the WFBs showed high H/C (1.7-1.8) and O/C (0.8-1.0) ratios that provide low chemical energy during combustion. This result indicates that WFBs are not recommended to be burned directly as fuel, however, they can be pyrolyzed and converted into solid pyrolytic products such as biochar with improved properties for fuel application. Hazardous components, such as cyclopropylmethanol, were removed and converted into value-added compounds, such as 1,4:3,6-dianhydro-d-glucopyranose, for use in pharmaceuticals. These results show that the pyrolysis of WFBs at high temperature and low heating rate is a promising feature to produce value-added chemicals and reduce the formation of harmful chemical species. Thus, the release of hazardous formaldehyde and greenhouse gases into the environment is redirected.
    Matched MeSH terms: Methane
  16. Kurniawan TA, Liang X, Singh D, Othman MHD, Goh HH, Gikas P, et al.
    J Environ Manage, 2022 Jan 01;301:113882.
    PMID: 34638040 DOI: 10.1016/j.jenvman.2021.113882
    Due to its increasing demands for fossil fuels, Indonesia needs an alternative energy to diversify its energy supply. Landfill gas (LFG), which key component is methane (CH4), has become one of the most attractive options to sustain its continued economic development. This exploratory study seeks to demonstrate the added value of landfilled municipal solid waste (MSW) in generating sustainable energy, resulting from CH4 emissions in the Bantargebang landfill (Jakarta). The power generation capacity of a waste-to-energy (WTE) plant based on a mathematical modeling was investigated. This article critically evaluated the production of electricity and potential income from its sale in the market. The project's environmental impact assessment and its socio-economic and environmental benefits in terms of quantitative and qualitative aspects were discussed. It was found that the emitted CH4 from the landfill could be reduced by 25,000 Mt annually, while its electricity generation could reach one million kW ⋅h annually, savings on equivalent electricity charge worth US$ 112 million/year (based on US' 8/kW ⋅ h). An equivalent CO2 mitigation of 3.4 × 106 Mt/year was obtained. The income from its power sale were US$ 1.2 ×106 in the 1st year and 7.7 ×107US$ in the 15th year, respectively, based on the projected CH4 and power generation. The modeling study on the Bantargebang landfill using the LFG extraction data indicated that the LFG production ranged from 0.05 to 0.40 m3 per kg of the landfilled MSW. The LFG could generate electricity as low as US' 8 per kW ⋅ h. With respect to the implications of this study, the revenue not only defrays the cost of landfill's operations and maintenance (O&M), but also provides an incentive and means to further improve its design and operations. Overall, this work not only leads to a diversification of primary energy, but also improves environmental protection and the living standard of the people surrounding the plant.
    Matched MeSH terms: Methane/analysis
  17. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
    Matched MeSH terms: Methane
  18. Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, et al.
    Chemosphere, 2021 Oct;281:130835.
    PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835
    The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
    Matched MeSH terms: Methane
  19. Chai A, Wong YS, Ong SA, Aminah Lutpi N, Sam ST, Kee WC, et al.
    Bioresour Technol, 2021 Sep;336:125319.
    PMID: 34049168 DOI: 10.1016/j.biortech.2021.125319
    A pilot scale anaerobic degradation of sugarcane vinasse was carried out at various hydraulic retention time (HRT) in the Anaerobic Suspended Growth Closed Bioreactor (ASGCB) under thermophilic temperature. The performance and kinetics were evaluated through the Haldane-Andrews model to investigate the substrate inhibition potential of sugarcane vinasse. All parameters show great performance between HRT 35 and 25 days: chemical oxygen demand (COD) reduction efficiency (81.6 to 86.8%), volatile fatty acids (VFA) reduction efficiency (92.4 to 98.5%), maximum methane yield (70%) and maximum biogas production (19.35 L/day). Furthermore, steady state values from various HRT were obtained in the kinetic evaluation for: rXmax (1.20 /day), Ks (19.95 gCOD/L), Ki (7.00 gCOD/L) and [Formula: see text] (0.33 LCH4/gCOD reduction). This study shows that anaerobic degradation of sugarcane vinasse through ASGCB could perform well at high HRT and provides a low degree of substrate inhibition as compared to existing studies from literature.
    Matched MeSH terms: Methane
  20. Knox SH, Bansal S, McNicol G, Schafer K, Sturtevant C, Ueyama M, et al.
    Glob Chang Biol, 2021 08;27(15):3582-3604.
    PMID: 33914985 DOI: 10.1111/gcb.15661
    While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
    Matched MeSH terms: Methane*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links