Displaying publications 1 - 20 of 2084 in total

Abstract:
Sort:
  1. Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, et al.
    mBio, 2018 08 21;9(4).
    PMID: 30131362 DOI: 10.1128/mBio.01462-18
    Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  2. Zhou L, Wang P, Zhang J, Heng BC, Tong GQ
    Zygote, 2016 Feb;24(1):89-97.
    PMID: 25672483 DOI: 10.1017/S0967199414000768
    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
    Matched MeSH terms: Mice, Inbred ICR
  3. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  4. Zakaria ZA, Sulaiman MR, Gopalan HK, Abdul Ghani ZD, Raden Mohd Nor RN, Mat Jais AM, et al.
    Yakugaku Zasshi, 2007 Feb;127(2):359-65.
    PMID: 17268156
    The antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract were investigated in experimental animal models. The antinociceptive activity was measured using the writhing, hot plate and formalin tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by in vacuo evaporation to dryness, was weighed and prepared by serial dilution in DMSO in the doses of 20, 100 and 200 mg/kg. The extract was administered (s.c.) 30 min prior to subjection to the respective assays. The extract was found to exhibit significant (p < 0.05) antinociceptive and anti-inflammatory activities. As a conclusion, the present study confirmed the traditional claims of using C. capsularis to treat various ailments related to inflammation and pain.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  5. Zakaria ZA, Abdul Ghani ZD, Raden Mohd Nor RN, Gopalan HK, Sulaiman MR, Abdullah FC
    Yakugaku Zasshi, 2006 Nov;126(11):1197-203.
    PMID: 17077622
    The present study was carried out to establish the antinociceptive and anti-inflammatory properties of Dicranopteris linearis leaves chloroform extract in experimental animals. The antinociceptive activity was measured using the abdominal constriction, formalin and hot plate tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by evaporation under vacuo (40 degrees C) to dryness, was dissolved in dimethyl sulfoxide to the doses of 20, 100 and 200 mg/kg and administered subcutaneously 30 min prior to subjection to the above mentioned assays. The extract, at all doses used, was found to exhibit significant (p<0.05) antinociceptive activity in a dose-dependent manner. However, the significant (p<0.05) anti-inflammatory activity observed occur in a dose-independent manner. As a conclusion, the chloroform extract of D. linearis possesses antinociceptive and anti-inflammatory activity and thus justify its traditional uses by the Malays to treat various ailments.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  6. Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, et al.
    Yakugaku Zasshi, 2006 Nov;126(11):1171-8.
    PMID: 17077618
    AIM: The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of chloroform extract of Solanum nigrum leaves using various animal models.

    METHODS: The extract was prepared by soaking (1:20; w/v) the air-dried powdered leaves (20 g) in chloroform for 72 hrs followed by evaporation (40 degrees C) under reduced pressure to dryness (1.26 g) and then dissolved (1:50; w/v) in dimethylsulfoxide (DMSO). The supernatant, considered as the stock solution with dose of 200 mg/kg, was diluted using DMSO to 20 and 100 mg/kg, and all doses were administered (s.c.; 10 ml/kg) in mice/rats 30 min prior to tests.

    RESULTS: The extract exhibited significant (p<0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (p<0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests. Overall, the activities occurred in a dose-independent manner.

    CONCLUSION: The present study demonstrated that the lipid-soluble extract of S. nigrum leaves possessed antinociceptive, anti-inflammatory and anti-pyretic properties and confirmed the traditional claims.

    Matched MeSH terms: Mice, Inbred BALB C; Mice
  7. Hani H, Allaudin ZN, Mohd-Lila MA, Ibrahim TA, Othman AM
    Xenotransplantation, 2014 Mar-Apr;21(2):174-82.
    PMID: 24645790 DOI: 10.1111/xen.12087
    BACKGROUND: Type 1 diabetes mellitus is a devastating disease for which there is currently no cure, but only lifetime management. Islet xenotransplantation is a promising technique for the restoration of blood glucose control in patients with diabetes mellitus. The purpose of this study was to explore the potential use of caprine (goat) islet cells as xenogeneic grafts in the treatment for diabetes in a mouse model.
    METHODS: Caprine pancreases were harvested and transported to the laboratory under conditions optimized to prevent ischemia. Islets were isolated, purified, and tested for functionality. Caprine islets (2000 islet equivalent) were transplanted beneath the kidney capsules of diabetic BALB/c mice under thalidomide-induced immunosuppression. Blood glucose and insulin levels of grafted mice were evaluated by glucometer and enzyme-linked immunosorbent assay kit, respectively. The functionality and quality of caprine pancreatic islet grafts were assessed by intraperitoneal glucose tolerance tests.
    RESULTS: The viability of purified islet cells exceeded 90%. Recipient mice exhibited normoglycemia (<11 mM glucose) for 30 days. In addition, weight gain negatively correlated with blood glucose level. The findings verified diabetes reversal in caprine islet recipient mice. A significant drop in non-fasting blood glucose level (from 23.3 ± 5.4 to 8.04 ± 0.44 mM) and simultaneous increase in serum insulin level (from 0.01 ± 0.001 to 0.56 ± 0.17 μg/l) and body weights (from 23.64 ± 0.31 to 25.85 ± 0.34 g) were observed (P < 0.05). Immunohistochemical analysis verified insulin production in the transplanted islets.
    CONCLUSIONS: Purified caprine islets were demonstrated to successfully sustain viability and functionality for controlling blood glucose levels in an immunosuppressed mouse model of diabetes. These results suggest the use of caprine islets as an addition to the supply of xenogeneic islets for diabetes research.
    KEYWORDS: caprine islets; streptozotocin‐injected mice; type 1 diabetes; xenotransplantation
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  8. Yehya AHS, Subramaniam AV, Asif M, Kaur G, Abdul Majid AMS, Oon CE
    World J Gastroenterol, 2022 Aug 28;28(32):4620-4634.
    PMID: 36157930 DOI: 10.3748/wjg.v28.i32.4620
    BACKGROUND: Pancreatic cancer is the most aggressive cancer type. Gemcitabine is the first line chemo-drug used for pancreatic cancer but exerts a broad spectrum of organ toxicities and adverse effects in patients.

    AIM: To evaluate the anti-tumour activity and toxicological effects of Orthosiphon stamineus extract formulation (ID: C5EOSEW5050ESA trademarked as Nuva-staticTM), and gemcitabine combination on pancreatic xenograft model.

    METHODS: Mice were randomly divided into six groups of 6 mice each (n = 6) and given different treatments for 28 d. The study design consisted of a 2 x 3 factorial treatment structure, with gemcitabine (yes/no) by oral (at 1200 and 400 mg/kg per day). Human pancreatic cancer cells were injected subcutaneously into the flanks of athymic nude mice. C5EOSEW5050ESA (200 or 400 mg/kg per day) was administered orally, while gemcitabine (10 mg/kg per 3 d) was given intraperitoneally either alone or in combination treatment. Histopathological analyses of vital organs, tumour tissues, and incidence of lethality were analysed. Analyses of tumour necrosis and proliferation were determined by haematoxylin-eosin staining and immunohistochemistry for Ki-67, respectively.

    RESULTS: No signs of toxicity or damage to vital organs were observed in all treatment groups compared to the untreated group. C5EOSEW5050ESA at 200 mg/kg and gemcitabine combination had no additive antitumor effects compared to a single treatment. Remarkably, a comparably greater response in a reduction in tumour growth, Ki-67 protein expression, and necrosis was demonstrated by 400 mg/kg of C5EOSEW5050ESA and gemcitabine combination than that of the individual agents.

    CONCLUSION: These results highlighted the synergistic activity of C5EOSEW5050ESA with gemcitabine to reduce pancreatic tumour growth in mice compared to a single treatment. Thus, this study provides valuable insights into using C5EOSEW5050ESA as a complementary treatment with gemcitabine for pancreatic cancer.

    Matched MeSH terms: Mice, Nude; Mice
  9. Razali NN, Raja Ali RA, Muhammad Nawawi KN, Yahaya A, Mohd Rathi ND, Mokhtar NM
    World J Gastroenterol, 2023 Oct 28;29(40):5543-5556.
    PMID: 37970476 DOI: 10.3748/wjg.v29.i40.5543
    BACKGROUND: Phosphatidylinositol-3-kinases (PI3K) is a well-known route in inflammation-related cancer. Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis (UC) and colorectal cancer (CRC) with colitis-associated cancer (CAC). PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes. Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth.

    AIM: To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis.

    METHODS: Genomic DNA from 32 colonic samples, including CAC (n = 7), UC (n = 10) and CRC (n = 15), was sequenced for the rs10889677 mutation. The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector. The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line. CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium, then buparlisib was administered after 14 d. The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2.

    RESULTS: Luciferase activity decreased by 2.07-fold in the rs10889677 mutant, confirming the hypothesis that the variant disrupted miRNA binding sites, which led to an increase in IL23R expression and the activation of the PI3K signaling pathway. Furthermore, CAC-induced mice had a significantly higher disease activity index (P < 0.05). Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice (P < 0.05), reduced the percentage of proliferating cells by 5%, and increased the number of apoptotic cells. The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression.

    CONCLUSION: Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway, and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC.

    Matched MeSH terms: Mice
  10. Sathasivam K, Ramanathan S, Mansor SM, Haris MR, Wernsdorfer WH
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:19-22.
    PMID: 19915811 DOI: 10.1007/s00508-009-1229-0
    Following up a popular use of crude leaf preparations from Carica papaya for the treatment of dengue infections, a suspension of powdered Carica papaya leaves in palm oil has been investigated for its effect on thrombocyte counts in mice, administering by gavage 15 mg of powdered leaves per kg body weight to 5 mice. Equal numbers of animals received corresponding volumes of either palm oil alone or physiological saline solution. Thrombocyte counts before and at 1, 2, 4, 8, 10, 12, 24, 48 and 72 hours after dosing revealed significantly higher mean counts at 1, 2, 4, 8, 10 and 12 after dosing with the C. papaya leaf formulation as compared to the mean count at hour 0. There was only a non-significant rise of thrombocyte counts in the group having received saline solution, possibly the expression of a normal circadian rhythm in mice. The group having received palm oil only showed a protracted increase of platelet counts that was significant at hours 8 and 48 and obviously the result of a hitherto unknown stimulation of thrombocyte release. The results call for a dose-response investigation and for extending the studies to the isolation and identification of the C. papaya substances responsible for the release and/or production of thrombocytes.
    Matched MeSH terms: Mice
  11. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Mice
  12. Sorokin EV, Tsareva TR, Sominina AA, Pisareva MM, Komissarov AV, Kosheleva AA, et al.
    Vopr. Virusol., 2014;59(6):27-31.
    PMID: 25929033
    A panel of five monoclonal antibodies (MAbs) to the HA1 molecule of the influenza B virus of the Victorian lineage with high virus-neutralizing activity was developed. For identification of the virus neutralizing epitopes in HA1 escape mutants (EM) of the influenza BIShandong/07/97 and B/Malaysia/2506/04 virus were selected using virus- neutralizing antibodies (MAbs). Three EMs had single, two--double and one--triple amino acid substitutions (AAS) in HA1 (H122N, A202E, K203T, K2031, K203N or A317V). In addition, AAS N197S was detected in three EMs. A correlation of AAS identified with peculiarities of interaction of EMs with Mabs was discussed.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  13. Leont'eva NA, Fadeeva LL
    Vopr. Virusol., 1969 Jul-Aug;14(4):464-8.
    PMID: 4982330
    Matched MeSH terms: Mice
  14. Setoh YX, Peng NY, Nakayama E, Amarilla AA, Prow NA, Suhrbier A, et al.
    Viruses, 2018 10 03;10(10).
    PMID: 30282919 DOI: 10.3390/v10100541
    The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.
    Matched MeSH terms: Mice, Inbred C57BL; Mice, Knockout; Mice
  15. Yun SI, Song BH, Frank JC, Julander JG, Olsen AL, Polejaeva IA, et al.
    Viruses, 2018 08 11;10(8).
    PMID: 30103523 DOI: 10.3390/v10080422
    Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  16. Nordin F, Ahmad RNR, Farzaneh F
    Virus Res, 2017 05 02;235:106-114.
    PMID: 28408207 DOI: 10.1016/j.virusres.2017.04.007
    Induced pluripotent stem cells (iPSC) are somatic cells reprogrammed to pluripotency by forced expression of pluripotency factors. These cells are shown to have the same pluripotent potential as embryonic stem cells (ESC) and considered as an alternative to the much controversial usage of ESC which involved human embryos. However, the traditional method in reprogramming cells into iPSC using genome-integrating retro- or lenti- viruses remains an obstacle for its application in clinical setting. Although numerous studies have been conducted for a safer DNA-based reprogramming, reprogramming of iPSC by genetic modifications may raise the possibility of malignant transformation and has been a major limitation for its usage in clinical applications. Therefore, there is a need for an alternative method to reprogram the cells without the use of gene editing and a much safer way to deliver transcription factors to induce pluripotency on target cells. Using protein transduction approach, a number of studies have demonstrated the generation of human iPSCs from human fibroblasts and mouse embryonic fibroblasts by direct delivery of reprogramming proteins. In this review, the definition and mechanism of HIV-TAT protein (a type of protein transduction domain) in delivering recombinant proteins, including the potential of protein-based delivery to induce iPSC were further discussed.
    Matched MeSH terms: Mice
  17. Li S, Zhang L, Wang Y, Wang S, Sun H, Su W, et al.
    Virus Res, 2013 Jan;171(1):238-41.
    PMID: 23116594 DOI: 10.1016/j.virusres.2012.10.019
    Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV.
    Matched MeSH terms: Mice
  18. Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, et al.
    Virus Res, 2022 Dec;322:198937.
    PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
    Matched MeSH terms: Mice
  19. Freiberg B, Rahman MM, Marquardt O
    Virus Genes, 1999;19(3):167-82.
    PMID: 10595408
    This report extends the knowledge on the epizootical situation of foot-and-mouth disease in Asia. RNA from six samples of type A and five of type O virus, isolated between 1987 and 1997 in Bangladesh, Iran, Malaysia and Turkey, was subjected to reverse transcription-dependent polymerase chain reactions that amplify large parts of the capsid protein VP1 encoding genome region. The amplification products were sequenced, and the sequences aligned to each other and to published sequences. This showed the type O isolates of 1987-1997 from Bangladesh to be of same genotype and closely related to isolates of 1988 and later from Saudi Arabia, 1990 from India, 1996 from Greece and Bulgaria, and 1997 from Iran. Among the analyzed type A isolates, those of 1992 and 1996 from Turkey were of same genotype and related to previously described isolates of 1987 from Iran and of 1992 from Saudi Arabia. The isolate of 1997 from Malaysia was found to be related to isolates from Thailand of 1993 and 1996. The isolates of 1987 from Bangladesh and 1997 from Iran, however, represent different so far not described genotypes. Monoclonal antibodies, raised against the vaccine production strains A22 Iraq, Asial Shamir, O1 Kaufbeuren and O1 Manisa, and the recent type A field isolates Saudi Arabia/92 and Albania/96, were used in an ELISA to compare the reaction patterns of many of the field isolates. The monoclonal antibodies were further characterized for virus-neutralizing activity and binding to trypsinized homologous virus. The failure of neutralizing antibodies in binding to trypsinized homologous as well as to heterologous virus suggested the epitopes to reside at the major antigenic component of the virus, which is the capsid protein VP1. Two non-neutralizing antibodies that bind to trypsin-sensitive epitopes cross-reacted, however, with heterologous virus. This indicates the existence of a trypsin-sensitive antigenic site outside of VP1. In summary, the results obtained by ELISA confirm the observed sequence differences, but indicate further sequence differences at minor antigenic sites that do not reside on VP1.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links