Displaying publications 1 - 20 of 892 in total

Abstract:
Sort:
  1. Mohd Nizam T, Binting RA, Mohd Saari S, Kumar TV, Muhammad M, Satim H, et al.
    Malays J Med Sci, 2016 May;23(3):32-9.
    PMID: 27418867 MyJurnal
    This study aimed to determine the minimum inhibitory concentrations (MICs) of various antifungal agents against moulds isolated from dermatological specimens.
    Matched MeSH terms: Microbial Sensitivity Tests
  2. Abdella M, Lahiri C, Abdullah I, Anwar A
    Med Chem, 2024;20(2):130-139.
    PMID: 37612861 DOI: 10.2174/1573406419666230823104300
    BACKGROUND: Infectious diseases are the second leading cause of deaths worldwide. Pathogenic bacteria have been developing tremendous resistance against antibiotics which has placed an additional burden on healthcare systems. Gallic acid belongs to a naturally occurring phenolic class of compounds and is known to possess a wide spectrum of antimicrobial activities.

    AIMS & OBJECTIVES: In this study, we synthesized thirteen derivatives of gallic acid and evaluated their antibacterial potential against seven multi-drug resistant bacteria, as well as cytotoxic effects against human embryonic kidney cell line in vitro. Methods: 13 compounds were successfully synthesized with moderate to good yield and evaluated. Synthesized derivatives were characterized by using nuclear magnetic resonance spectroscopy, mass spectrometry, and Fourier transformation infrared spectroscopy. Antibacterial activity was determined using microdilution while cytotoxicyt was assessed using MTT assay.

    RESULTS: The results of antibacterial assay showed that seven out of thirteen compounds exhibited antibacterial effects with compound 6 and 13 being most potent against Staphylococcus aureus (MIC 56 μg/mL) and Salmonella enterica (MIC 475 μg/mL) respectively. On the other hand, most of these compounds showed lower cytotoxicity against human embryonic kidney cells (HEK 293), with IC50 values ranging from over 700 μg/mL.

    CONCLUSION: Notably, compound 13 was found to be non-toxic at concentrations as high as 5000 μg/mL. These findings suggest that the present synthetic derivatives of gallic acid hold potential for further studies in the development of potent antibacterial agents.

    Matched MeSH terms: Microbial Sensitivity Tests
  3. Tissera S, Lee SM
    Malays J Med Sci, 2013 May;20(3):14-22.
    PMID: 23966820
    This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters.
    Matched MeSH terms: Microbial Sensitivity Tests
  4. Mai-Ngam K, Chumningan P
    Med J Malaysia, 2004 May;59 Suppl B:137-8.
    PMID: 15468856
    Matched MeSH terms: Microbial Sensitivity Tests*
  5. Sia KJ, Tang IP, Prepageran N
    Med J Malaysia, 2013;68(1):6-9.
    PMID: 23466758 MyJurnal
    OBJECTIVES: To identify the common bacteria of otorhinolaryngological (ORL) infection in three general hospitals in the state of Sarawak, East Malaysia and to determine the antibiotic sensitivity of the common bacteria to update local antibiotic policy.
    METHODS: All specimens with positive monoclonal culture, received from inpatient and outpatient Otorhinolaryngology Department in the year 2009 and 2010 were included in the study. Patients' demographics, nature of specimens, bacterial isolates and antibiotic sensitivity were analysed by using the Statistical Package for the Social Sciences (SPSS).
    RESULTS: A total 244 positive monoclonal cultures were identified. Staphylococcus species and Gram negative bacilli were the commonest bacteria of ORL infections. Common ORL bacteria remain sensitive to our front line antibiotics. There are a number of multi-drug resistant isolates of MRSA, ESBL Klebsiella pneumoniae and Acinetobacter baumanii in the hospital-acquired infections.
    CONCLUSION: Although resistance to antimicrobial agents is growing worldwide, first line antibiotics still show significant therapeutic advantage in our local setting. The low resistance of bacterial isolates in our community reflects judicious use of antibiotics in our routine clinical practices.

    Study site: Sarawak General Hospital, Sibu Hospital and Miri Hospital
    Matched MeSH terms: Microbial Sensitivity Tests*
  6. Rasidin RSM, Suhaili Z, Mohamed AFS, Hod R, Neela V, Amin-Nordin S
    Trop Biomed, 2020 Jun 01;37(2):471-481.
    PMID: 33612816
    Nosocomial infection caused by Acinetobacter baumannii is common among immunocompromised patients. Treatment strategy is limited due to rapid resistance development and lack of novel antibiotic. Colistin has been the last line therapy with good in vitro activity against infections caused by multi-drug resistance A. baumannii. However, pharmacological updates are required to support dosing optimisation. This study aimed to determine the time-kill kinetic and resistance development after antibiotic exposure as well as post-antibiotic effect of colistin at different static concentrations in in vitro A. baumannii system. The static in vitro time-kill and post-antibiotic effect experiments were conducted against two clinical isolates as well as one reference isolate ATCC 19606. Time-kill and postantibiotic effect were studied at colistin concentrations ranging from 0.25MIC to 16.0MIC and 0.5MIC to 4.0MIC, respectively. Post-exposure resistance development was examined in time-kill study. Killing activity and post-antibiotic effect were in a concentration-dependent manner. However, delayed killing activity indicates colistin tolerance. Development of resistance after exposure was not detected except for the ATCC 19606 strain. Dosing suggestion based on the observations include administration of supplemental dose 3 MIU at 12 hours after loading dose, administration of maintenance dose 9 MIU in two divided doses and application of extended interval in renal adjustment dose. However, the information is applicable for non-colistin-heteroresistance A. baumannii with colistin MIC < 1.0 mg/L. As for heteroresistance and strain with colistin MIC > 1.0 mg/L, combination therapy would be the more appropriate treatment strategy.
    Matched MeSH terms: Microbial Sensitivity Tests*
  7. Saeed SI, Vivian L, Zalati CWSCW, Sani NIM, Aklilu E, Mohamad M, et al.
    BMC Vet Res, 2023 Jan 14;19(1):10.
    PMID: 36641476 DOI: 10.1186/s12917-022-03560-6
    BACKGROUND: S. aureus is one of the causative agents of bovine mastitis. The treatment using conventional antimicrobials has been hampered due to the development of antimicrobial resistance and the ability of the bacteria to form biofilms and localize inside the host cells.

    OBJECTIVES: Here, the efficacy of graphene oxide (GO), a carbon-based nanomaterial, was tested against the biofilms and intracellular S. aureus invitro. Following that, the mechanism for the intracellular antimicrobial activities and GO toxicities was elucidated.

    METHODS: GO antibiofilm properties were evaluated based on the disruption of biofilm structure, and the intracellular antimicrobial activities were determined by the survival of S. aureus in infected bovine mammary cells following GO exposure. The mechanism for GO intracellular antimicrobial activities was investigated using endocytosis inhibitors. GO toxicity towards the host cells was assessed using a resazurin assay.

    RESULTS: At 100 ug/mL, GO reduced between 30 and 70% of S. aureus biofilm mass, suggesting GO's ability to disrupt the biofilm structure. At 200 ug/mL, GO killed almost 80% of intracellular S. aureus, and the antimicrobial activities were inhibited when cells were pre-treated with cytochalasin D, suggesting GO intracellular antimicrobial activities were dependent on the actin-polymerization of the cell membrane. At

    Matched MeSH terms: Microbial Sensitivity Tests/veterinary
  8. Al-Othrubi SM, Hanafiah A, Radu S, Neoh H, Jamal R
    Saudi Med J, 2011 Apr;32(4):400-6.
    PMID: 21484001
    To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources.
    Matched MeSH terms: Microbial Sensitivity Tests*
  9. Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN
    Med Mycol, 2024 Jan 09;62(1).
    PMID: 38061839 DOI: 10.1093/mmy/myad126
    Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
    Matched MeSH terms: Microbial Sensitivity Tests/veterinary
  10. Santhanam J, Yahaya N, Aziz MN
    Med J Malaysia, 2013 Aug;68(4):343-7.
    PMID: 24145264
    Resistance to antifungal agents has increased in Candida spp., especially in non-albicans species. Recent findings reported a strikingly low susceptibility in Candida spp. towards itraconazole in Malaysia. In this study, a colorimetric broth dilution method was utilized to determine the susceptibility of Candida spp. isolated in Kuala Lumpur Hospital within a six month period. A total of 82 isolates from blood, peritoneal and other fluids were tested against 8 antifungal agents using the Sensititre Yeast One method. These comprised of 32 (39%) C. albicans, 17 (20.7%) C. glabrata, 15 (18.3%) C. tropicalis, 13 (15.9%) C. parapsilosis, two (2.4%) C. sake and 1 (1.2%) each of C. pelliculosa, C. rugosa and Pichia etchellsii/carsonii. Overall, susceptibility of all isolates to caspofungin was 98.8%, amphotericin B, 97.6%; 5-flucytosine, 97.6%; voriconazole, 97.6%; posaconazole, 87.8%; fluconazole, 82.9%; ketoconazole, 79.3%; and itraconazole, 56.1%. A total of 18 Candida spp. isolates (22 %) were resistant to at least one antifungal agent tested, and half of these were resistant to three or more antifungal agents. C. glabrata was the most frequently identified resistant species (10 isolates), followed by C. tropicalis (4 isolates), C. parapsilosis (3 isolates) and C. albicans (1 isolate). Resistance was highest against ketoconazole (20.9%), followed by itraconazole (13.4%). However, 30.5% of isolates were susceptible-dose dependent towards itraconazole. Long-term usage of itraconazole in Malaysia and a predominance of nonalbicans species may account for the results observed in this study. In conclusion, susceptibility to antifungal drugs is species-dependent among Candida spp.; reduced susceptibility to itraconazole is concomitant with the high number of non-albicans Candida species isolated in Malaysia.
    Matched MeSH terms: Microbial Sensitivity Tests
  11. Nur Hilda Hanina AW, Intan NS, Syafinaz AN, Zalinah A, Lailatul Akmar MN, Devnani AS
    Med J Malaysia, 2015 Jun;70(3):182-7.
    PMID: 26248782 MyJurnal
    INTRODUCTION: Patients suffering from diabetes mellitus (DM) frequently present with infected diabetic foot ulcers (DFU). This study was done to record the anatomical site and the grade of ulcers according to Wagner's classification and to culture the microorganisms from the ulcers and determine their antibiotic sensitivity.
    MATERIALS AND METHODS: Prospective study was conducted on 77 diabetic patients who were admitted with DFU from June until December 2011. Patients with end stage renal failure, those who had previous vascular surgery on the involved limb, or hyperbaric oxygen or maggot therapy for the ulcers, or had unrelated skin diseases around the involved foot were excluded from the study. Specimens for culture were obtained by a sterile swab stick or tissue sample was taken from the wound with sterile surgical instruments.
    RESULTS: Wagner's grade III and IV ulcers were most common. Majority of the ulcers involved toes (48%). Gram negative microorganisms were predominantly isolated (71.1%). Gram positive microorganisms were less frequently cultured (27.7%). Fungus was cultured from one sample (1.2%). Gram negative microorganisms were sensitive to aminoglycosides, cephalosporins or β-lactamase inhibitors. More than 40% were resistant to ampicillin. Gram positive microorganisms were sensitive to cloxacillin. MRSA were sensitive to vancomycin.
    CONCLUSION: Empirical use of antibiotics should be curtailed to prevent development of drug resistant strains of microorganisms and MRSA. We suggest use of antiseptic solutions to clean the ulcers until antibiotic sensitivity report is available. Results of our altered treatment regimen we plan to publish in a later study.
    Matched MeSH terms: Microbial Sensitivity Tests
  12. Poh-Hwa, T., Yoke-Kqueen, C., Indu Bala, J., Son, R.
    MyJurnal
    The aim of this work was to investigate the antioxidant and antimicrobial of Phyllanthus amarus, Phyllanthus niruri and Phyllanthus urinaria. P. niruri was found to possess the highest antioxidant activity, the activity decreased in the order P. niruri > P. amarus > P. urinaria for water extract. However, the activity decreased in the order P. niruri > P. urinaria > P. amarus for methanol extract. The result correlation between the antioxidant activity and total phenolic content revealed a positive correlation of 0.954 < r 2 < 1.000 for both water and methanol extract. Methanol extract showed higher total phenolic content and antioxidant activity as compared with water extract. Lowest Minimum Inhibitory Concentration (MIC) value for water extract against the selected microorganism was >2.5 mg/mL meanwhile, for methanol extract was 2.5 mg/mL and >0.625 mg/mL were the value for water and methanol extract. Methanol extract showed better inhibition potential than water extract
    Matched MeSH terms: Microbial Sensitivity Tests
  13. Bankur PK, Mathew M, Almalki SA, Jalaluddin M, Jayanti I, Durgaraju M
    J Contemp Dent Pract, 2019 Sep 01;20(9):1041-1044.
    PMID: 31797826
    AIM: The aim of the present study was to evaluate the antibacterial efficacy of various concentrations of Eucalyptus globulus leaf extract on periodontal pathogens.

    MATERIALS AND METHODS: Matured, healthy and disease-free leaves of Eucalyptus globulus were collected. The leaves were washed under tap water and finally dried in an oven at a temperature of 45°C for 48 hours. The dried plants were ground in an electric blender to make them into a powder. The powder was mixed with 100% ethanol and kept it inside a shaker overnight at 35°C. The mixture was centrifuged for 10 minutes at 2,500 rpm. Three different concentrations (10%, 50%, and 100% v/v) were used as antibacterial agents. Chlorhexidine (0.2%) was considered as positive control and dimethyl formamide was considered as negative control against P. gingivalis and A. actinomycetemcomitans. The disc diffusion method was used to determine the extract's antibacterial activity against the test organisms. A digital Vernier caliper was used to measure the diameter of antibacterial activity showing the zone of inhibition in millimeters.

    RESULTS: Eucalyptus globulus with 100% concentration showed a maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis (5.38 ± 0.32 mm, 4.82 ± 0.11 mm) followed by 50% and 10% accordingly. The negative control of dimethyl formamide showed a zone of inhibition of 0.48 ± 0.96 mm and 0.63 ± 0.20 mm against A. actinomycetemcomitans and P. gingivalis. The positive control of 0.2% chlorhexidine showed a zone of inhibition of 8.46 ± 1.02 mm and 7.18 ± 0.54 mm against A. actinomycetemcomitans and P. gingivalis. The ANOVA test showed a highly significant antibacterial efficacy in 0.2% chlorhexidine and 100% concentration Eucalyptus globulus.

    CONCLUSION: A significant maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis was showed by 100% concentration of Eucalyptus globulus.

    CLINICAL SIGNIFICANCE: Other than the systemic diseases treatment, Eucalyptus globulus also serves as an effective promising alternative to antibiotics in the prevention of oral infections because of the natural phytochemicals existing in them.

    Matched MeSH terms: Microbial Sensitivity Tests
  14. Sandrasaigaran P, Mohan S, Segaran NS, Lee TY, Radu S, Hasan H
    Int J Food Microbiol, 2023 Dec 16;407:110390.
    PMID: 37722349 DOI: 10.1016/j.ijfoodmicro.2023.110390
    Filth flies at wet markets can be a vector harbouring multiple antimicrobial-resistant (MAR) nontyphoidal Salmonella (NTS), and such strains are a significant threat to public health as they may cause severe infections in humans. This study aims to investigate the prevalence of antimicrobial-resistant NTS, especially Salmonella Enteritidis and S. Typhimurium harboured by filth flies at wet markets, and investigate their survival in the simulated gastric fluid (SGF). Filth flies (n = 90) were captured from wet markets in Klang, Malaysia, and processed to isolate Salmonella spp. The isolates (n = 16) were identified using the multiplex-touchdown PCR and assessed their antimicrobial susceptibility against 11 antimicrobial agents. Finally, three isolates with the highest MAR index were subjected to SGF survival tests. It was observed that 17.8 % of flies (n = 16/90) harbouring Salmonella, out of which 10 % (n = 9/90) was S. Enteritidis, 2.2 % (n = 2/90) was S. Typhimurium, and 5.6 % was unidentified serotypes of Salmonella enterica subsp. I. 43.8 % (n = 7/16) were confirmed as MAR, and they were observed to be resistant against ampicillin, chloramphenicol, kanamycin, streptomycin, and nalidixic acid. Three strains, F35, F75, and F85 demonstrated the highest MAR index and were able to survive (>6-log10) in the SGF (180 min), indicating their potential virulence and invasiveness. This study provides significant insights into the prevalence and severity of MAR nontyphoidal Salmonella harboured by filth flies in wet markets, which may help inform strategies for controlling the spread and outbreak of foodborne disease.
    Matched MeSH terms: Microbial Sensitivity Tests
  15. Farhan N, Al-Maleki AR, Sarih NM, Yahya R
    Bioorg Chem, 2023 Nov;140:106786.
    PMID: 37586131 DOI: 10.1016/j.bioorg.2023.106786
    Recent studies show that some metal ions, injure microbial cells in various ways due to membrane breakdown, protein malfunction, and oxidative stress. Metal complexes are suited for creating novel antibacterial medications due to their distinct mechanisms of action and the variety of three-dimensional geometries they can acquire. In this Perspective, the present study focused on new antibacterial strategies based on metal oleoyl amide complexes. Thus, oleoyl amides ligand (fatty hydroxamic acid and fatty hydrazide hydrate) with the transition metal ions named Ag (I), Co (II), Cu (II), Ni (II) and Sn (II) complexes were successfully synthesized in this study. The metals- oleoyl amide were characterized using elemental analysis, and fourier transforms infrared (FTIR) spectroscopy. The antibacterial effect of metals- oleoyl amide complexes was investigated for Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by analysing minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and scanning electron microscopy (SEM). The results showed that metal-oleoyl amide complexes have high antibacterial activity at low concentrations. This study inferred that metal oleoyl amide complexes could be utilised as a promising therapeutic antibacterial agent.
    Matched MeSH terms: Microbial Sensitivity Tests
  16. Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH
    PeerJ, 2023;11:e15304.
    PMID: 37214089 DOI: 10.7717/peerj.15304
    BACKGROUND: Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability.

    METHODS: The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA).

    RESULTS: All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development.

    CONCLUSION: These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.

    Matched MeSH terms: Microbial Sensitivity Tests
  17. Navarathinam SD, Neoh HM, Tan TL, Wahab AA, Mohd Nizam Tzar MN, Ding CH
    Malays J Pathol, 2023 Dec;45(3):417-424.
    PMID: 38155383
    BACKGROUND: Candida tropicalis is a globally distributed yeast that has been popping up in the medical literature lately, albeit for unenviable reasons. C. tropicalis is associated with substantial morbidity, mortality as well as drug resistance. The aims of this study were to ascertain the antifungal susceptibility profile and the biofilm-producing capability of this notorious yeast in our centre.

    METHODS: C. tropicalis isolates from sterile specimens were collected over a 12-month period. Conclusive identification was achieved biochemically with the ID 32 C kit. Susceptibility to nine antifungal agents was carried out using the colourimetric broth microdilution kit Sensititre YeastOne YO10. Biofilm-producing capability was evaluated by quantifying biomass formation spectrophotometrically following staining with crystal violet.

    RESULTS: Twenty-four non-repetitive isolates of C. tropicalis were collected. The resistance rates to the triazole agents were 29.2% for fluconazole, 16.7% for itraconazole, 20.8% for voriconazole and 8.3% for posaconazole-the pan-azole resistance rate was identical to that of posaconazole. No resistance was recorded for amphotericin B, flucysosine or any of the echinocandins tested. A total of 16/24 (66.7%) isolates were categorized as high biomass producers and 8/24 (33.3%) were moderate biomass producers. None of our isolates were low biomass producers.

    CONCLUSION: The C. tropicalis isolates from our centre were resistant only to triazole agents, with the highest resistance rate being recorded for fluconazole and the lowest for posaconazole. While this is not by itself alarming, the fact that our isolates were prolific biofilm producers means that even azole-susceptible isolates can be paradoxically refractory to antifungal therapy.

    Matched MeSH terms: Microbial Sensitivity Tests
  18. Hanifa B, Bibi N, Sirajuddin M, Tiekink ERT, Kubicki M, Khan I, et al.
    J Biomol Struct Dyn, 2024;42(4):1826-1845.
    PMID: 37114651 DOI: 10.1080/07391102.2023.2204160
    Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 μg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 μg/mL) and colistin-sulphate (MIC = 0.25 μg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 μg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 μg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 μg/mL and HC50 > 32 μg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 μg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.
    Matched MeSH terms: Microbial Sensitivity Tests
  19. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
    Matched MeSH terms: Microbial Sensitivity Tests/methods*; Microbial Sensitivity Tests/standards*
  20. Abdsamah O, Zaidi NT, Sule AB
    Pak J Pharm Sci, 2012 Jul;25(3):675-8.
    PMID: 22713960
    Present study aimed to investigate the in vitro antimicrobial activity of the chloroform, methanol and aqueous extracts of Ficus deltoidea at 10mg/ml, 20mg/ml and 50 mg/ml, respectively using the disc diffusion method against 2 Gram positive {Staphylococcus aureus (IMR S-277), Bacillus subtilis (IMR K-1)}, 2 Gram negative {Escherichia coli (IMR E-940), Pseudomonas aeroginosa (IMR P-84)} and 1 fungal strain, Candida albicans (IMR C-44). All the extracts showed inhibitory activity on the fungus, Gram-positive and Gram-negative bacteria strains tested except for the chloroform and aqueous extracts on B. subtilis, E. coli, and P. aeroginosa. The methanol extract exhibited good antibacterial and antifungal activities against the test organisms. The methanol extract significantly inhibited the growth of S. aureus forming a wide inhibition zone (15.67 ± 0.58 mm) and lowest minimum inhibitory concentration (MIC) value (3.125 mg/ml). B. subtilis was the least sensitive to the chloroform extract (6.33 ± 0.58 mm) and highest minimum inhibitory concentration (MIC) value (25 mg/ml). Antimicrobial activity of F. deltoidea in vitro further justifies its utility in folkleric medicines for the treatment of infections of microbial origin.
    Matched MeSH terms: Microbial Sensitivity Tests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links