Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. A Talip B, Snelling WJ, Sleator RD, Lowery C, Dooley JSG
    BMC Microbiol, 2018 11 26;18(1):196.
    PMID: 30477427 DOI: 10.1186/s12866-018-1335-0
    BACKGROUND: The field of diagnostics continues to advance rapidly with a variety of novel approaches, mainly dependent upon high technology platforms. Nonetheless much diagnosis, particularly in developing countries, still relies upon traditional methods such as microscopy. Biological material, particularly nucleic acids, on archived glass slides is a potential source of useful information both for diagnostic and epidemiological purposes. There are significant challenges faced when examining archived samples in order that an adequate amount of amplifiable DNA can be obtained. Herein, we describe a model system to detect low numbers of bacterial cells isolated from glass slides using (laser capture microscopy) LCM coupled with PCR amplification of a suitable target.

    RESULTS: Mycobacterium smegmatis was used as a model organism to provide a proof of principle for a method to recover bacteria from a stained sample on a glass slide using a laser capture system. Ziehl-Neelsen (ZN) stained cells were excised and catapulted into tubes. Recovered cells were subjected to DNA extraction and pre-amplified with multiple displacement amplification (MDA). This system allowed a minimum of 30 catapulted cells to be detected following a nested real-time PCR assay, using rpoB specific primers. The combination of MDA and nested real-time PCR resulted in a 30-fold increase in sensitivity for the detection of low numbers of cells isolated using LCM.

    CONCLUSIONS: This study highlights the potential of LCM coupled with MDA as a tool to improve the recovery of amplifiable nucleic acids from archived glass slides. The inclusion of the MDA step was essential to enable downstream amplification. This platform should be broadly applicable to a variety of diagnostic applications and we have used it as a proof of principle with a Mycobacterium sp. model system.

    Matched MeSH terms: Microscopy, Confocal/methods*
  2. Abdelwahab SI, Abdul AB, Devi N, Taha MM, Al-zubairi AS, Mohan S, et al.
    Exp. Toxicol. Pathol., 2010 Sep;62(5):461-9.
    PMID: 19581075 DOI: 10.1016/j.etp.2009.06.005
    Cervical cancer is the second most common cause of cancer death in women. We have demonstrated previously that zerumbone (ZER) has an anti-cancer effect towards human cervical cancer cells (HeLa).
    Matched MeSH terms: Microscopy, Confocal
  3. Al-Nabulsi M, Daud A, Yiu C, Omar H, Sauro S, Fawzy A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394743 DOI: 10.3390/ma12162504
    Objective: To evaluate the effect of a new application method of bulk-fill flowable composite resin material on bond-strength, nanoleakage, and mechanical properties of dentine bonding agents.

    MATERIALS AND METHODS: Sound extracted human molars were randomly divided into: manufacturer's instructions (MI), manual blend 2 mm (MB2), and manual blend 4 mm (MB4). Occlusal enamel was removed and flattened, dentin surfaces were bonded by Prime & Bond universal (Dentsply and Optibond FL, Kerr). For the MI group, adhesives were applied following the manufacturer's instructions then light-cured. For MB groups, SDR flow+ bulk-fill flowable composite resin was applied in 2- or 4-mm increment then manually rubbed by a micro brush for 15 s with uncured dentine bonding agents and the mixture was light-cured. Composite buildup was fabricated incrementally using Ceram.X One, Dentsply nanohybrid composite resin restorative material. After 24-h water storage, the teeth were sectioned to obtain beams of about 0.8 mm2 for 24-h and thermocycled micro-tensile bond strength at 0.5 mm/min crosshead speed. Degree of conversion was evaluated with micro-Raman spectroscopy. Contraction gaps at 24 h after polymerization were evaluated and atomic force microscopy (AFM) nano-indentation processes were undertaken for measuring the hardness across the interface. Depth of resin penetration was studied using a scanning electron microscope (SEM). Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Nanoindentation hardness was separately analyzed using one-way ANOVA.

    RESULTS: Factors "storage F = 6.3" and "application F = 30.11" significantly affected the bond strength to dentine. For Optibond FL, no significant difference in nanoleakage was found in MI/MB4 groups between baseline and aged specimens; significant difference in nanoleakage score was observed in MB2 groups. Confocal microscopy analysis showed MB2 Optibond FL and Prime & Bond universal specimens diffusing within the dentine. Contraction gap was significantly reduced in MB2 specimens in both adhesive systems. Degree of conversion (DC) of the MB2 specimens were numerically more compared to MS1 in both adhesive systems.

    CONCLUSION: Present study suggests that the new co-blend technique might have a positive effect on bond strengths of etch-and-rinse adhesives to dentine.

    Matched MeSH terms: Microscopy, Confocal
  4. Bastion ML, Mohamad MH
    Eye Contact Lens, 2006 Sep;32(5):223-7.
    PMID: 16974154
    PURPOSE: To investigate factors associated with the presence of microdot deposits or white dots (WDs) on confocal microscopy in regular soft contact lens (SCL) users.
    METHODS: This cross-sectional observational study investigated changes in the cornea in regular SCL users by using an in vivo slit-scanning microscope (ConfoScan 3). Images were analyzed by noting the presence of highly reflective WDs. Factors associated with WDs were analyzed by using an unpaired t test with Welch correction.
    RESULTS: There were 56 SCL wearers. Of these, a group of 10 had WDs (GWD) in various parts of the cornea. They had worn SCLs for 7 to 20 years and had a mean total duration of SCL wear of 13.6 +/- 4.4 years. Their mean age was 35.8 +/- 10.4 years. They were compared with a group of SCL wearers with no evidence of WDs (GNWD). The mean age of GNWD was 29.1 +/- 7.2 years, with a mean duration of SCL use of 8.17 +/- 5.1 years. The two groups were compared in terms of age, total duration of SCL wear (years), duration in hours per week, SCL water content (%), mean cell density in the endothelium and stroma, endothelial cell coefficient of cell size variation, and percentage of hexagonal cells. Only the duration of SCL wear was significantly associated with the presence of WDs (p=0.0042). WDs were most commonly found in the posterior stroma (n = 9). Two patients had WDs in the epithelium, with one of these having WDs in the endothelium. All patients except one with a hazy left eye scan had WDs bilaterally and symmetrically.
    CONCLUSIONS: Confocal microscopy allows visualization of WDs in the corneas of Asian regular SCL users. Patients with WDs have a longer history of SCL wear. WDs may represent an early stage of corneal disease or degeneration associated with alterations in cell behavior.
    Matched MeSH terms: Microscopy, Confocal
  5. Chai WL, Moharamzadeh K, Brook IM, Van Noort R
    Biotech Histochem, 2011 Aug;86(4):242-54.
    PMID: 20392135 DOI: 10.3109/10520291003707916
    The success of dental implant treatment depends on the healing of both hard and soft tissues. While osseointegration provides initial success, the biological seal of the peri-implant soft tissue is crucial for maintaining the long term success of implants. Most studies of the biological seal of peri-implant tissues are based on animal or monolayer cell culture models. To understand the mechanisms of soft tissue attachment and the factors affecting the integrity of the soft tissue around the implants, it is essential to obtain good quality histological sections for microscopic examination. The nature of the specimens, however, which consist of both metal implant and soft peri-implant tissues, poses difficulties in preparing the specimens for histomorphometric analysis of the implant-soft tissue interface. We review various methods that have been used for the implant-tissue interface investigation with particular focus on the soft tissue. The different methods are classified and the advantages and limitations of the different techniques are highlighted.
    Matched MeSH terms: Microscopy, Confocal/methods*
  6. Chew ST, Eshak Z, Al-Haddad A
    Microsc Res Tech, 2023 Jul;86(7):754-761.
    PMID: 37078493 DOI: 10.1002/jemt.24323
    To assess the interfacial adaptation and penetration depth of three different bioceramic-based sealers (CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG) compared to an epoxy resin-based sealer (AH Plus) in oval root canals. Fourty extracted single-rooted mandibular premolar with oval canal were prepared and randomly allocated according to the obturation into; CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG and AH Plus. The roots were sectioned at 3, 6 and 9 mm from the apex. The sealer adaptation and the penetration depth were evaluated under confocal laser scanning microscope. One-way ANOVA and Repeated measure ANOVA were used to statistically analyze the data. Nishika Canal Sealer BG showed significantly higher sealer adaptation than EndoSeal MTA (P 
    Matched MeSH terms: Microscopy, Confocal
  7. Chiam CW, Sam IC, Chan YF, Wong KT, Ong KC
    Methods Mol Biol, 2016;1426:235-40.
    PMID: 27233276 DOI: 10.1007/978-1-4939-3618-2_21
    Immunohistochemistry is a histological technique that allows detection of one or more proteins of interest within a cell using specific antibody binding, followed by microscopic visualization of a chromogenic substrate catalyzed by peroxidase and/or alkaline phosphatase. Here, we describe a method to localize Chikungunya virus (CHIKV) antigens in formalin-fixed and paraffin-embedded infected mouse brain.
    Matched MeSH terms: Microscopy, Confocal
  8. Dasiman R, Rahman NS, Othman S, Mustafa MF, Yusoff NJ, Jusoff WH, et al.
    Med Sci Monit Basic Res, 2013 Oct 04;19:258-66.
    PMID: 24092420 DOI: 10.12659/MSMBR.884019
    BACKGROUND: This study aimed to investigate the effects of vitrification and slow freezing on actin, tubulin, and nuclei of in vivo preimplantation murine embryos at various developmental stages using a Confocal Laser Scanning Microscope (CLSM).

    MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.

    RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.

    CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.

    Matched MeSH terms: Microscopy, Confocal
  9. Elnager A, Hassan R, Idris Z, Mustafa Z, Wan-Arfah N, Sulaiman SA, et al.
    Biomed Res Int, 2015;2015:627471.
    PMID: 25664321 DOI: 10.1155/2015/627471
    Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.
    Matched MeSH terms: Microscopy, Confocal
  10. Fatimah IS, Iswadi IM, Khairul O, Nurhazilah M, Fadzilah MS, Padzil AR, et al.
    Clin Ter, 2010;161(2):125-8.
    PMID: 20499025
    There is an association between reactive oxygen species (ROS) and DNA damage to sperm. Researchers believe that ROS is always present at the sperm's head. The variation of ROS concentration within the area has an impact on the integrity of the DNA.
    Matched MeSH terms: Microscopy, Confocal
  11. Ghosh S, Mutalib HA, Kaur S, Ghoshal R, Retnasabapathy S
    Malays J Med Sci, 2017 Mar;24(2):44-54.
    PMID: 28894403 MyJurnal DOI: 10.21315/mjms2017.24.2.6
    PURPOSE: To evaluate corneal cell morphology in patients with keratoconus using an in vivo slit scanning confocal microscope.

    METHODS: A cross-sectional study was conducted to evaluate the corneal cell morphology of 47 keratoconus patients and 32 healthy eyes without any ocular disease. New keratoconus patients with different disease severities and without any other ocular co-morbidity were recruited from the ophthalmology department of a public hospital in Malaysia from June 2013 to May 2014. Corneal cell morphology was evaluated using an in vivo slit-scanning confocal microscope. Qualitative and quantitative data were analysed using a grading scale and the Nidek Advanced Visual Information System software, respectively.

    RESULTS: The corneal cell morphology of patients with keratoconus was significantly different from that of healthy eyes except in endothelial cell density (P = 0.072). In the keratoconus group, increased level of stromal haze, alterations such as the elongation of keratocyte nuclei and clustering of cells at the anterior stroma, and dark bands in the posterior stroma were observed with increased severity of the disease. The mean anterior and posterior stromal keratocyte densities and cell areas among the different stages of keratoconus were significantly different (P < 0.001 and P = 0.044, respectively). However, the changes observed in the endothelium were not significantly different (P > 0.05) among the three stages of keratoconus.

    CONCLUSION: Confocal microscopy observation showed significant changes in corneal cell morphology in keratoconic cornea from normal healthy cornea. Analysis also showed significant changes in different severities of keratoconus. Understanding the corneal cell morphology changes in keratoconus may help in the long-term monitoring and management of keratoconus.

    Matched MeSH terms: Microscopy, Confocal
  12. Gobe GC, Ng KL, Small DM, Vesey DA, Johnson DW, Samaratunga H, et al.
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):47-53.
    PMID: 26995091 DOI: 10.1016/j.bbrc.2016.03.048
    Apoptosis repressor with caspase recruitment domain (ARC), an endogenous inhibitor of apoptosis, is upregulated in a number of human cancers, thereby conferring drug resistance and giving a rationale for the inhibition of ARC to overcome drug resistance. Our hypothesis was that ARC would be similarly upregulated and targetable for therapy in renal cell carcinoma (RCC). Expression of ARC was assessed in 85 human RCC samples and paired non-neoplastic kidney by qPCR and immunohistochemistry, as well as in four RCC cell lines by qPCR, Western immunoblot and confocal microscopy. Contrary to expectations, ARC was significantly decreased in the majority of clear cell RCC and in three (ACHN, Caki-1 and 786-0) of the four RCC cell lines compared with the HK-2 non-cancerous human proximal tubular epithelial cell line. Inhibition of ARC with shRNA in the RCC cell line (SN12K1) that had shown increased ARC expression conferred resistance to Sunitinib, and upregulated interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). We therefore propose that decreased ARC, particularly in clear cell RCC, confers resistance to targeted therapy through restoration of tyrosine kinase-independent alternate angiogenesis pathways. Although the results are contrary to expectations from other cancer studies, they were confirmed here with multiple analytical methods. We believe the highly heterogeneous nature of cancers like RCC predicate that expression patterns of molecules must be interpreted in relation to respective matched non-neoplastic regions. In the current study, this procedure indicated that ARC is decreased in RCC.
    Matched MeSH terms: Microscopy, Confocal
  13. Gunasegar S, Himratul-Aznita WH
    FEMS Yeast Res., 2019 Mar 01;19(2).
    PMID: 30476044 DOI: 10.1093/femsyr/foy123
    Candida albicans ATCC 14053 and Candida parapsilosis ATCC 22019 hyphal-wall protein 1 (HWP1) are involved in hyphae formation and pathogenesis. The transcriptional agglutinin-like sequence 3 (ALS3) genes in both species are responsible for the development of biofilm and colonization on tooth surfaces. Therefore, we investigated the expression of HWP1 and ALS3 quantitatively in C. albicans and C. parapsilosis and examined the biofilm structure upon exposure to various nicotine concentrations. In vitro, biofilms of Candida species were developed directly on slides using the Lab-Tek Chamber Slide System and visualized by confocal laser scanning microscopy. Quantitative real-time polymerase chain reaction was used to measure HWP1 and ALS3 expression in C. albicans ATCC 14053 and C. parapsilosis ATCC 22019. The results indicated that nicotine multiplied the number of yeast cells and increased the extracellular polysaccharides of Candida species. We also found that 1-2 mg/mL nicotine could enhance the formation of biofilm. The findings also revealed that the expression of HWP1 and ALS3 in Candida species were increased as the nicotine concentration increased. Therefore, nicotine influences the biofilm development of oral-associated C. albicans ATCC 14053 and C. parapsilosis ATCC 22019.
    Matched MeSH terms: Microscopy, Confocal
  14. Hafidh RR, Hussein SZ, MalAllah MQ, Abdulamir AS, Abu Bakar F
    Curr Cancer Drug Targets, 2018;18(8):807-815.
    PMID: 29141549 DOI: 10.2174/1568009617666171114144236
    BACKGROUND: Citrus bioactive compounds, as active anticancer agents, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted.

    OBJECTIVES: The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene.

    METHODS: The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of the pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. Highthroughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development.

    RESULTS: In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene- driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from the most to the least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins.

    CONCLUSION: The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines.

    Matched MeSH terms: Microscopy, Confocal
  15. Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Laude A, Ciaccio EJ, et al.
    Comput Methods Programs Biomed, 2018 Oct;165:1-12.
    PMID: 30337064 DOI: 10.1016/j.cmpb.2018.07.012
    BACKGROUND AND OBJECTIVES: Glaucoma is an eye condition which leads to permanent blindness when the disease progresses to an advanced stage. It occurs due to inappropriate intraocular pressure within the eye, resulting in damage to the optic nerve. Glaucoma does not exhibit any symptoms in its nascent stage and thus, it is important to diagnose early to prevent blindness. Fundus photography is widely used by ophthalmologists to assist in diagnosis of glaucoma and is cost-effective.

    METHODS: The morphological features of the disc that is characteristic of glaucoma are clearly seen in the fundus images. However, manual inspection of the acquired fundus images may be prone to inter-observer variation. Therefore, a computer-aided detection (CAD) system is proposed to make an accurate, reliable and fast diagnosis of glaucoma based on the optic nerve features of fundus imaging. In this paper, we reviewed existing techniques to automatically diagnose glaucoma.

    RESULTS: The use of CAD is very effective in the diagnosis of glaucoma and can assist the clinicians to alleviate their workload significantly. We have also discussed the advantages of employing state-of-art techniques, including deep learning (DL), when developing the automated system. The DL methods are effective in glaucoma diagnosis.

    CONCLUSIONS: Novel DL algorithms with big data availability are required to develop a reliable CAD system. Such techniques can be employed to diagnose other eye diseases accurately.

    Matched MeSH terms: Microscopy, Confocal/methods
  16. Hajrezaie M, Paydar M, Looi CY, Moghadamtousi SZ, Hassandarvish P, Salga MS, et al.
    Sci Rep, 2015 Mar 13;5:9097.
    PMID: 25764970 DOI: 10.1038/srep09097
    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
    Matched MeSH terms: Microscopy, Confocal
  17. Hassan T, Thiberville L, Hermant C, Lachkar S, Piton N, Guisier F, et al.
    PLoS One, 2017;12(12):e0189846.
    PMID: 29267317 DOI: 10.1371/journal.pone.0189846
    BACKGROUND: Malignant solitary pulmonary nodules (SPN) have become more prevalent, with upper lobes predilection. Probe-based confocal laser endomicroscopy (pCLE) provides in-vivo imaging of SPN. However, the stiffness of the 1mm confocal probe (AlveoFlex) causes difficult accessibility to the upper lobes. A thinner 600μm probe designed for bile duct exploration (CholangioFlex) has the potential to reach the upper lobes.

    OBJECTIVES: To examine the accessibility of malignant SPNs in all segments of the lungs using either the 0.6mm or 1.4 mm probe and to assess the quality and inter observer interpretation of SPN confocal imaging obtained from either miniprobes.

    METHODS: Radial(r)-EBUS was used to locate and sample the SPN. In-vivo pCLE analysis of the SPN was performed using either CholangioFlex (apical and posterior segments of the upper lobes) or AlveoFlex (other segments) introduced into the guide sheath before sampling. pCLE features were compared between the two probes.

    RESULTS: Fourty-eight patients with malignant SPN were included (NCT01931579). The diagnostic accuracy for lung cancer using r-EBUS coupled with pCLE imaging was 79.2%. All the SPNs were successfully explored with either one of the probes (19 and 29 subjects for CholangioFlex and AlveoFlex, respectively). A specific solid pattern in the SPN was found in 30 pCLE explorations. Comparison between the two probes found no differences in the axial fibers thickness, cell size and specific solid pattern in the nodules. Extra-alveolar microvessel size appeared larger using CholangioFlex suggesting less compression effect. The kappa test for interobserver agreement for the identification of solid pattern was 0.74 (p = 0.001).

    CONCLUSION: This study demonstrates that pCLE imaging of SPNs is achievable in all segments of both lungs using either the 0.6mm or 1.4mm miniprobe.

    Matched MeSH terms: Microscopy, Confocal/instrumentation; Microscopy, Confocal/methods*
  18. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Microscopy, Confocal
  19. Janib SM, Gustafson JA, Minea RO, Swenson SD, Liu S, Pastuszka MK, et al.
    Biomacromolecules, 2014 Jul 14;15(7):2347-58.
    PMID: 24871936 DOI: 10.1021/bm401622y
    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and therapeutic applications.
    Matched MeSH terms: Microscopy, Confocal
  20. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, et al.
    Bull. Exp. Biol. Med., 2014 Jan;156(3):393-8.
    PMID: 24771384 DOI: 10.1007/s10517-014-2357-8
    Morphological and phenotypical signs of cultured readaptation osteoblasts were studied after a short-term space mission. The ultrastructure and phenotype of human osteoblasts after Soyuz TMA-11 space flight (2007) were evaluated by scanning electron microscopy, laser confocal microscopy, and ELISA. The morphofunctional changes in cell cultures persisted after 12 passages. Osteoblasts retained the drastic changes in their shape and size, contour deformation, disorganization of the microtubular network, redistribution of organelles and specialized structures of the plasmalemma in comparison with the ground control cells. On the other hand, the expression of osteoprotegerin and osteocalcin (bone metabolism markers) increased; the expression of bone resorption markers ICAM-1 and IL-6 also increased, while the expression of VCAM-1 decreased. Hence, space flight led to the development of persistent shifts in cultured osteoblasts indicating injuries to the cytoskeleton and the phenotype changes, indicating modulation of bone metabolism biomarkers.
    Matched MeSH terms: Microscopy, Confocal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links