Displaying publications 1 - 20 of 240 in total

Abstract:
Sort:
  1. George DS, Anthony KK, Santhirasegaram V, Saruan NM, Kaur H, Razali Z, et al.
    Water Sci Technol, 2017 May;75(10):2465-2474.
    PMID: 28541954 DOI: 10.2166/wst.2017.080
    The effect of two different water sources (treated waste water and lake water) used for irrigation on the soil geochemical properties and the fruit quality parameters of the Lohan guava were studied. The fruits' physical attributes, physicochemical attributes, nutritional attributes, mineral content as well as consumers' acceptance were evaluated. The properties of the different water sources and their effect, on both the soil and the quality of the fruits, were evaluated. Analysis of the irrigation water revealed that treated waste water was of acceptable quality with reference to irrigation water quality guidelines, while the lake water used for irrigation fell short in several aspects. The different water sources used for irrigation in the farms affected the soil geochemical properties significantly. The quality of guavas harvested from the farms that were irrigated with different water sources was significantly different. Irrigation water qualities were observed to have positive effects on the quality of the fruits and consumers' acceptance as observed from the results of quality analysis and the consumers' acceptance test.
    Matched MeSH terms: Minerals
  2. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al.
    Water Res, 2010 Aug;44(15):4341-50.
    PMID: 20580402 DOI: 10.1016/j.watres.2010.05.023
    Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 +/- 0.01 mm to 2.3 +/- 1.0 mm and the average settling velocity increased from 9.9 +/- 0.7 m h(-1) to 80 +/- 8 m h(-1). This resulted in an increased biomass concentration (from 2.9 +/- 0.8 g L(-1) to 7.3 +/- 0.9 g L(-1)) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.
    Matched MeSH terms: Minerals/metabolism
  3. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

    Matched MeSH terms: Minerals
  4. Noordin MM, Zhang SS, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):276-9.
    PMID: 11003117
    Samples of Brachiaria decumbens collected from 5 farms representing the Peninsular Malaysia were subjected to selected trace mineral and phytate analyses to explain the pathogenesis of B decumbens intoxication. Concentrations of Cu, Zn, Fe and Mo were comparable to other grasses while that of phytate was low. The molar ratios of Cu:Zn, Cu:Mo, and Cu:Fe warrant that Cu deficiency is involved in the toxicity of B decumbens. This might aggravate the development of photosensitization of unpigmented or lightly pigmented areas of affected animals. The Zn:phytate ratio could predispose to Zn deficiency during intoxication.
    Matched MeSH terms: Minerals/analysis*
  5. Jing Wen Kok, Tengku Rozaina Tengku Mohamad, Tengku Rozaina Tengku Mohamad
    MyJurnal
    Mango is one of the popular fruits in Malaysia and has been used in the jam, puree and drinks production. Production of food products using mango pulp has generated by-products such as peel and kernel. Disposal of these by-products will cause environmental pollution if not properly treated. Mango peel contains high nutritional composition and antioxidant properties and can be utilised as food ingredients. The objectives of this study are to determine the nutritional composition and antioxidant properties of the peels of two selected mango varieties, namely Golden Lily and Chokanan. Analysis of proximate composition, minerals, total phenolic compounds, carotenoids, and antioxidant activity (DPPH and ABTS) were carried out in this study. Results of the proximate analysis showed that the peels of both mango varieties were a good source of fibre, which were 14.45% for Golden Lily and 14.89% for Chokanan. The crude fat, crude protein, and total carbohydrate of Chokanan peel (2.62%, 4.67% and 57.74%, respectively) were higher than the Golden Lily peel (1.13%, 2.90% and 53.16%, respectively). Contrastingly, the moisture content of the Golden Lily peel (24.67%) was higher than the Chokanan peel (16.61%). Potassium was the main mineral found in both Golden Lily and Chokanan mango peels (8802.10 mg/kg and 8443.60 mg/kg, respectively). The total phenolic compounds in the peels of both mango varieties were not significantly different. The Chokanan peel contained a higher carotenoids content (35.26 µg/g) than the Golden Lily peel (15.03 µg/g). The ABTS value for Chokanan peel was higher (1406.00 μmol TE/g) than Golden Lily peel (1314.00 μmol TE/g). This study showed that Chokanan and Golden Lily mango peels have the potential to be utilised as ingredient in food products due to their high fibre content.
    Matched MeSH terms: Minerals
  6. Khan SU, Nuruddin MF, Ayub T, Shafiq N
    ScientificWorldJournal, 2014;2014:986567.
    PMID: 24701196 DOI: 10.1155/2014/986567
    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.
    Matched MeSH terms: Minerals/chemistry*
  7. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Juahir H, Fakharian K
    ScientificWorldJournal, 2014;2014:419058.
    PMID: 24523640 DOI: 10.1155/2014/419058
    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na(+)/Cl(-), Mg(2+)/Ca(2+), and Cl(-)/HCO3 (-) ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area.
    Matched MeSH terms: Minerals/analysis; Minerals/chemistry
  8. Azlan A, Khoo HE, Idris MA, Ismail A, Razman MR
    ScientificWorldJournal, 2012;2012:403574.
    PMID: 22649292 DOI: 10.1100/2012/403574
    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
    Matched MeSH terms: Minerals/analysis*
  9. Bivi MS, Paiko AS, Khairulmazmi A, Akhtar MS, Idris AS
    Plant Pathol J, 2016 Oct;32(5):396-406.
    PMID: 27721689
    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.
    Matched MeSH terms: Minerals
  10. Padmanabhan E, Eswaran H, Reich PF
    Sci Total Environ, 2013 Nov 1;465:196-204.
    PMID: 23541401 DOI: 10.1016/j.scitotenv.2013.03.024
    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner.
    Matched MeSH terms: Minerals
  11. Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al.
    Sci Total Environ, 2019 May 01;663:177-188.
    PMID: 30711584 DOI: 10.1016/j.scitotenv.2019.01.308
    Coal combustion and the disposal of combustion wastes emit enormous quantities of nano-sized particles that pose significant health concerns on exposure, particularly in unindustrialized countries. Samples of fresh and weathered class F fly ash were analysed through various techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), field-emission gun scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive x-ray spectroscopy (EDS), and Raman Spectroscopy. The imaging techniques showed that the fresh and weathered coal fly ash nanoparticles (CFA-NPs) are mostly spherical shaped. The crystalline phases detected were quartz, mullite, ettringite, calcite, maghemite, hematite, gypsum, magnetite, clay residues, and sulphides. The most abundant crystalline phases were quartz mixed with Al-Fe-Si-K-Ti-O-amorphous phases whereas mullite was detected in several amorphous phases of Al, Fe, Ca, Si, O, K, Mg, Mn, and P. The analyses revealed that CFA-NPs are 5-500 nm in diameter and encapsulate several potentially hazardous elements (PHEs). The carbon species were detected as 5-50 nm carbon nanoballs of graphitic layers and massive fullerenes. Lastly, the aspects of health risks related to exposure to some detected ambient nanoparticles are also discussed.
    Matched MeSH terms: Minerals
  12. Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD
    Sci Total Environ, 2023 Jan 15;856(Pt 2):159283.
    PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283
    Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
    Matched MeSH terms: Minerals
  13. Muhammad Aiman, Mohammad Rahimi, Siti Zaharah Sakimin, Mohd Fauzi, Ramlan
    MyJurnal
    Ficus carica L. or fig is the oldest fruit tree that being cultivated by man. Grouped under genus Ficus, this species is grown widely in Mediterranean region and now being cultivated in an area with temperate or sub-temperate climate. Fig planting in Malaysia is still new, which was brought by a man as a hobby at first. Fig is a unique fruit tree as some variety can produce fruits without pollination. Contain lots of carbohydrates, essential amino acids, vitamins and minerals such potassium, fibre, calcium, iron compared to other fruits, fig have become an important source of diet to people especially in Mediterranean region since ancient time.
    Matched MeSH terms: Minerals
  14. Hazmi AJ, Zuki AB, Noordin MM, Jalila A, Norimah Y
    Med J Malaysia, 2008 Jul;63 Suppl A:93-4.
    PMID: 19025000
    This study was conducted based on the hypothesis that mineral and physicochemical properties of cockle shells similarly resemble the properties of corals (Porites sp.). Hence, the mineral and physicochemical evaluations of cockle shells were conducted to support the aforementioned hypothesis. The results indicated that cockle shells and coral exoskeleton shared similar mineral and physicochemical properties.
    Matched MeSH terms: Minerals
  15. Saravanan P, Ramakrishnan T, Ambalavanan N, Emmadi P, John TL
    J Oral Implantol, 2013 Aug;39(4):455-62.
    PMID: 23964779 DOI: 10.1563/AAID-JOI-D-10-00211
    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.
    Matched MeSH terms: Minerals
  16. Ismail M, Manickam E, Danial AM, Rahmat A, Yahaya A
    J Nutr Biochem, 2000 Nov;11(11-12):536-542.
    PMID: 11137889
    This study investigated the components present in and the total antioxidant activity of leaves of Strobilanthes crispus (L.) Bremek or Saricocalyx crispus (L.) Bremek (Acanthacea). Proximate analyses and total antioxidant activity using ferric thiocyanate and thiobarbituric acid methods were employed. Minerals content was determined using the atomic absorption spectrophotometer, whereas the water-soluble vitamins were determined by means of the UV-VIS spectrophotometer (vitamin C) and fluorimeter (vitamins B(1) and B(2)). Catechin, tannin, caffeine, and alkaloid contents were also studied. All data were compared to the previously reported results of Yerbamate, green tea, black tea, and Indian tea. The dried leaves contained a high amount of total ash (21.6%) as a result of a high amount of minerals including potassium (51%), calcium (24%), sodium (13%), iron (1%), and phosphorus (1%). High content of water-soluble vitamins (C, B(1), and B(2)) contributed to the high antioxidant activity of the leaves. The leaves also contained a moderate amount of other proximate composition as well as other compounds such as catechins, alkaloids, caffeine, and tannin, contributing further to the total antioxidant activity. Catechins of Strobilanthes crispus leaves showed highest antioxidant activity when compared to Yerbamate and vitamin E. Consumption of the leafy extract daily (5 g/day) as an herbal tea could contribute to the additional nutrients and antioxidants needed in the body to enhance the defense system, especially toward the incidence of degenerative diseases.
    Matched MeSH terms: Minerals
  17. Tripathy A, Pramanik S, Manna A, Shah NF, Shasmin HN, Radzi Z, et al.
    Sensors (Basel), 2016;16(3):292.
    PMID: 26927116 DOI: 10.3390/s16030292
    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.
    Matched MeSH terms: Minerals
  18. Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R
    Sci Rep, 2014;4:3645.
    PMID: 24413195 DOI: 10.1038/srep03645
    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.
    Matched MeSH terms: Minerals
  19. Seyyedi M, Mahmud HKB, Verrall M, Giwelli A, Esteban L, Ghasemiziarani M, et al.
    Sci Rep, 2020 Feb 27;10(1):3624.
    PMID: 32107400 DOI: 10.1038/s41598-020-60247-4
    Observations and modeling studies have shown that during CO2 injection into underground carbonate reservoirs, the dissolution of CO2 into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO2-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO2-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO2 injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole  formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO2 injection.
    Matched MeSH terms: Minerals
  20. Singh AK, Hakimi MH, Kumar A, Ahmed A, Abidin NSZ, Kinawy M, et al.
    Sci Rep, 2020 12 17;10(1):22108.
    PMID: 33335176 DOI: 10.1038/s41598-020-78906-x
    A high bituminous shale horizon from the Gurha mine in the Bikaner sub-basin of the Rajasthan District, NW India, was studied using a collection of geochemical and petrological techniques. This study investigated the nature and environmental conditions of the organic matter and its relation to the unconventional oil-shale resources of the bituminous shale. The analyzed shales have high total organic carbon and total sulfur contents, suggesting that these shale sediments were deposited in a paralic environment under reducing conditions. The dominant presence of organic matter derived from phytoplankton algae suggests warm climatic marine environment, with little connection to freshwater enhancing the growth of algae and other microorganisms. The analyzed bituminous shales have high aquatic-derived alginite organic matters, with low Pr/Ph, Pr/n-C17, and Ph/n-C18 ratios. It is classified as Type II oil-prone kerogen, consistent with high hydrogen index value. Considering the maturity indicators of geochemical Tmax (
    Matched MeSH terms: Minerals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links