Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Heo CC, Teel PD, OConnor BM, Tomberlin JK
    Exp Appl Acarol, 2021 Dec;85(2-4):223-246.
    PMID: 34762225 DOI: 10.1007/s10493-021-00676-6
    Acari community structure and function associated with delayed pig carrion decomposition has not been examined. In this study, 18 swine carcasses were studied in central Texas, USA, during two consecutive summers (2013 and 2014). Samples of ca. 400 g soil were collected from beneath, aside, and 5 m away from each pig carcass over 180 days. Mites from soil samples were extracted using Berlese funnels and identified to order and family levels and classified according to ecological function. In total 1565 and 1740 mites were identified from the 2013 and 2014 soil samples, respectively. Significant differences were determined for mite community structure at order and family levels temporally on carrion (e.g., day 0 × day 14) regardless of treatments and between soil regions where mites were collected (e.g., soil beneath vs. soil 5 m away from carrion). However, no significant differences were found in mite community structure at the order level between pig carrion with and without delayed Diptera colonization (i.e., treatments). Analysis at the family level determined a significant difference across treatments for both summers. Ecological function of mites did not change significantly following the delayed decomposition of pig carcasses. However, detritivores and fungivores were significant indicator groups during the pig carrion decomposition process. Furthermore, 13 phoretic mite species associated with eight forensically important beetle species were documented. Data from this study indicated that the rate of nutrient flow into the soil impacted associated arthropod communities; however, detecting such shifts depends on the taxonomic resolution being applied.
    Matched MeSH terms: Mites*
  2. Yeo BH, Tang TK, Wong SF, Tan CP, Wang Y, Cheong LZ, et al.
    Front Pharmacol, 2021;12:631136.
    PMID: 33833681 DOI: 10.3389/fphar.2021.631136
    Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
    Matched MeSH terms: Mites
  3. Lindquist EE, Oconnor BM, Shaw MD, Sidorchuk EA
    Zootaxa, 2020 Sep 28;4857(1):zootaxa.4857.1.4.
    PMID: 33056345 DOI: 10.11646/zootaxa.4857.1.4
    The gamasine genus Berlesia Canestrini, 1884, is revived and further diagnosed, based on descriptions of adult females, males and nymphs of three new species (B. hospitabilis sp. nov., B. multisetosa sp. nov., B. vorontsovi sp. nov.) ectoparasitic on raspy crickets of three genera of Gryllacrididae (Ensifera) from Australia and the Philippines. A tight sister relationship of Berlesia with the monobasic genus Katydiseius Fain Lukoschus, 1983, known only from a pseudophylline katydid in Malaysia, is proposed. The subfamily Katydiseiinae Fain Lukoschus, 1983 (previously included in the family Otopheidomenidae in the superfamily Phytoseioidea) is redefined to include only those two genera, and moved to the dermanyssoid family Laelapidae, while its previously other monobasic genus, Eickwortius Zhang, 1995, is retained tentatively in the family Otopheidomenidae. Among other taxa relevant to Katydiseiinae reviewed here, Berlesia cultrigera Berlese, 1910a is transferred to the genus Orthopteroseius Mo, 1996, at present Otopheidomenidae, as Orthopteroseius cultrigerum (Berlese) comb. nov., and Berlesia nuda Berlese, 1910b is transferred to the genus Prasadiseius Wainstein, 1972, at present Otopheidomenidae, as Prasadiseius nudum (Berlese) comb. nov. A key to the two genera and five species recognized as belonging in Katydiseiinae is presented. Notable morphological traits of Berlesia, including only deutonymphs equipped with well-developed claws and males with dimorphically more elongated salivary stylets, are discussed. The one known life cycle of a species of Berlesia, B. hospitabilis sp. nov., includes protonymphipary, followed by a fully functioning deutonymph, and male copulation with pharate females-traits, rarely or not known among gamasine mite associates of invertebrates. The possible significance of elongate spermatodactyls and male reduced feeding are explored.
    Matched MeSH terms: Mites*
  4. Azmiera N, Mariana A, Pimsler ML, Heo CC
    J Med Entomol, 2020 09 07;57(5):1354-1363.
    PMID: 32440683 DOI: 10.1093/jme/tjaa086
    Mite biodiversity and distribution in Malaysia is currently understudied. Most previous works on Malaysian Acari have focused on pest organisms of medical, veterinary, and agricultural concern, with a few recent studies centered on mites in forensic contexts. Previous literatures have targeted collection sites in forest reserves and/or mountains in either Peninsular or Malaysian Borneo, though the state of Sarawak had the least publications related to mite species descriptions despite having the highest number of nature parks of any state in the country. Most publications focused on the three states Selangor, Pahang and Sabah. Most of the mite species reported were from mammals (66.3%), with fewer species from birds (21.7%), arthropods (11.2%), and reptiles (0.8%). We believe that further work on the systematic documentation of mite species throughout Malaysia is necessary as it could generate useful tools, such as the use of mites as biogeographical markers or as forensic indicators. Therefore, this review catalogs mite species that have been documented in or on animal hosts in Malaysia and serves as a foundation for future work.
    Matched MeSH terms: Mites/physiology*
  5. Shchelkanov MY, Tabakaeva Moskvina TV, Kim EM, Derunov DA, Galkina IV
    Trop Biomed, 2020 Sep 01;37(3):778-782.
    PMID: 33612790 DOI: 10.47665/tb.37.3.778
    Canine demodicosis is a common skin disorder with multiple risk factors, including age and breed predisposition. There is relatively limited information about the risk factors for canine demodicosis in large canine populations. This retrospective case-control study was conducted by searching the electronic records of dogs with skin lesions for the presence of Demodex mites in skin scrapings. Diagnosis of demodicosis was based on the presence of skin lesions and mites in skin scrapings. Multivariate analysis was conducted using logistic regression analysis to estimate the relative risk and odds ratio of variables hypothesized to influence the risk of canine demodicosis, such as age, sex, breed, season, and parasitic infection. The results of multivariate logistic regression analysis showed a positive correlation between the dogs' age and demodicosis. Dogs older than three years, as well as puppies, had a high risk of demodicosis (P0.05). Breeds with the greatest association (odds ratio) with demodicosis included the American Staffordshire Terrier (OR=0.9) and Moscow Watchdog (OR=0.2). The presence of intestinal parasites, such as Diphyllobothrium latum, was significantly associated with demodicosis.
    Matched MeSH terms: Mites
  6. Noordin MAM, Noor MM, Aizat WM
    Mini Rev Med Chem, 2020;20(13):1287-1299.
    PMID: 32348218 DOI: 10.2174/1389557520666200429101942
    It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years worldwide. Such alarming statistics require immediate attention to improve the health of the aging population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts have been used in traditional medicine as potent antioxidant sources. Although many experiments had reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers that combine both subjects. In this review, we have collected and discussed various bioactive compounds from 26 different plant species known to affect both longevity and fertility. These compounds, including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical trial should be considered in the future to measure the effects of these bioactive compounds on human health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements or potential medical drugs to ensure a healthy aging population.
    Matched MeSH terms: Mites
  7. Azmiera N, Mariana A, Heo CC
    Trop Biomed, 2019 Dec 01;36(4):1099-1104.
    PMID: 33597479
    This is the first record of phoretic histiostomatid mites found on a forensically important blow fly species, Chrysomya villeneuvi (Diptera: Calliphoridae), collected from decomposing rabbit carcasses placed in Bukit Lagong Forest Reserve, Sungai Buloh and MARDI Cameron Highlands, Malaysia. The blow flies frequenting around the carcasses were first captured using an insect net. After pinning, they were examined under a stereomicroscope and mites phoretic on their body were carefully removed and preserved in 70% ethanol. Mites were cleared in lactic acid before mounting on slides using Hoyer's medium and identified under a compound microscope. The flies and their mites were identified as C. villeneuvi and deutonymphs of Histiostoma spp. (Astigmata: Histiostomatidae), respectively. This insectmite association may be useful to provide insights regarding the minimum post-mortem interval and the location of death in forensic entomological investigations.
    Matched MeSH terms: Mites*
  8. Jamil RZR, Vandervoort C, Wise JC
    J Econ Entomol, 2019 09 23;112(5):2262-2267.
    PMID: 31115447 DOI: 10.1093/jee/toz131
    Neoseiulus fallacis (Garman) is a predatory mite that is common in apple orchards and distributed throughout North America. However, N. fallacis may be susceptible to pesticides used for the management of crop pests. This study aimed to evaluate the temporal effects of commonly used insecticides on N. fallacis survival. Neoseiulus fallacis adults were exposed to field-aged residues, and mortality and lethal time were measured over 96 h of exposure. Carbaryl caused high mortality to N. fallacis and the shortest lethal time values (LT50), followed by spinetoram, with moderate lethal time values. Esfenvalerate, acetamiprid, chlorantraniliprole, and novaluron showed little to no lethality to N. fallacis following exposure to dry field-aged residues. The results of this study provide important field-relevant knowledge that is often void from laboratory-based studies, which can aid integrated pest management (IPM) decision-makers in apple production systems.
    Matched MeSH terms: Mites*
  9. Resch B, Baumann J, Pfingstl T
    Zootaxa, 2019 Jul 26;4647(1):zootaxa.4647.1.19.
    PMID: 31716987 DOI: 10.11646/zootaxa.4647.1.19
    Two new intertidal oribatid mite species from the Indo-pacific region are described. Indopacifica iohanna sp. n. was found on the coasts of the Philippines and can be distinguished from its congeners by the lack of a ventral tooth on the claws. The larva and nymphs of this species show the same type of plication and setation typical for juveniles of other selenoribatid mites. Indopacifica mauritiana sp. n. was discovered on the coast of Mauritius and can be separated from its congeners by possessing only vestigial lamellar setae. A morphometric comparison of these two species and Indopacifica pantai from Thailand and Malaysia showed a clear separation between the three species. The known distribution of the genus Indopacifica stretches now from Mauritius in the West to the Philippines in the East and further occurrences within this area should be expected.
    Matched MeSH terms: Mites*
  10. Yuan YM, Xue XF
    Zootaxa, 2019 Jun 04;4613(1):zootaxa.4613.1.8.
    PMID: 31716430 DOI: 10.11646/zootaxa.4613.1.8
    Two new species of the family Eriophyidae (Acari: Eriophyoidea) from Mount Trusmadi, Malaysia, are described and illustrated. They are Neodicrothrix grandcaputus sp. nov. on Stachyurus himalaicus (Stachyuraceae) and Latitudo asiaticis sp. nov. on Psychotria asiatica (Rubiaceae). Both of the two new species are vagrant on the lower leaf surface. No damage to the host was observed. In addition to the description, a key to species of Neodicrothrix is provided.
    Matched MeSH terms: Mites*
  11. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Mites/metabolism
  12. RAJA NUR ATIQAH RAJA AZIZI, MADINAH ADRUS
    MyJurnal
    A survey of ectoparasitic fauna on birds was conducted in October 2017 until January 2018. The aims of this study were to investigate the ectoparasitic fauna on birds and to compare its prevalence in the selected mainland and island of Sarawak. A series of sampling by using mist-net has been done in Mount Sadong and Satang Besar Island with a total of 1440 hours of sampling effort for each locality. A total of 53 individuals of birds were captured and examined for its ectoparasites. Twenty-one species of ectoparasites were recorded comprising four species of lice and 17 species of mites. Four species of lice and 11 species of mites were detected in Mount Sadong while eight species of mites and no lice were detected in Satang Besar Island. The prevalence of ectoparasites infested on birds in Mount Sadong (33.33%) was higher than Satang Besar Island (17.39%). The p-value (p= 0.474) indicated there was no significant difference between the prevalence of ectoparasites from both localities. The result is important since ectoparasites infestation could affect the survival of birds and has the potential transmission of zoonotic disease.
    Matched MeSH terms: Mites
  13. Leung AKC, Leong KF, Lam JM
    Case Rep Pediatr, 2019;2019:9542857.
    PMID: 31772809 DOI: 10.1155/2019/9542857
    Crusted scabies (also known as Norwegian scabies) is a highly contagious variant of scabies characterized by profuse proliferation of mites in the skin and widespread, crusted, hyperkeratotic papules, plaques, and nodules. Typically, pruritus is minimal or absent. The condition usually occurs in immunocompromised individuals. Occurrence in healthy infants has rarely been reported. We report an 11-month-old healthy Malay boy who presented with crusted scabies.
    Matched MeSH terms: Mites
  14. Lim PKC, Lee XC, Mohd Nazmi NMA, Tang YY, Wong SF, Mak JW, et al.
    Trop Biomed, 2018 Dec 01;35(4):1007-1016.
    PMID: 33601848
    Studies on parasite populations in Antarctic soils are scarce and thus little is known about the threat of these parasites towards either the natural fauna or human visitors. However, human presence in Antarctica, mainly through research and tourism, keeps increasing over time, potentially exposing visitors to zoonotic infections from Antarctic wildlife and environment. Most available literature to date has focused on faecal samples from Antarctic vertebrates. Therefore, this study addressed the possible presence of parasites in Antarctic soil that may be infectious to humans. Soil samples were obtained from five locations on Signy Island (South Orkney Islands, maritime Antarctic), namely North Point and Gourlay Peninsula (penguin rookeries), Pumphouse (relic coal-powered pump house), Jane Col (barren high altitude fellfield) and Berntsen Point (low altitude vegetated fellfield close to current research station). Approximately 10% of the soil samples (14/135) from 3 out of the 5 study sites had parasites which included Diphyllobotridae spp. eggs, Cryptosporidium sp., an apicomplexan protozoa (gregarine), Toxoplasma gondii, helminths (a cestode, Tetrabothrius sp., and a nematode larva) and mites. The presence of parasites in the 3 sites are most likely due to the presence of animal and human activities as two of these sites are penguin rookeries (North Point and Gourlay Peninsula) while the third site (Pumphouse Lake) has human activity. While some of the parasite species found in the soil samples appear to be distinctive, there were also parasites such as Cryptosporidium and Toxoplasma gondii that have a global distribution and are potentially pathogenic.
    Matched MeSH terms: Mites
  15. Ernieenor FCL, Ernna G, Jafson AS, Mariana A
    Exp Appl Acarol, 2018 Sep;76(1):99-107.
    PMID: 30151715 DOI: 10.1007/s10493-018-0285-4
    The occurrence of Suidasia medanensis (= S. pontifica) mites in Malaysian house dust was first reported in 1984. The taxonomy of this storage mite is, however, quite confusing. Therefore, we need an accurate identification to resolve morphological problems due to its minute size and some overlapping characters between species. The purpose of this study was to demonstrate the application of partial mitochondrial cytochrome c oxidase subunit I (COI) sequences for the identification of S. medanensis by PCR. Identity of the mite was first determined by observing morphological characters under a light microscope. Genomic DNA of S. medanensis mites was successfully extracted prior to PCR and DNA sequencing using COI universal primers. The length of the COI sequences obtained was 378 bp. BLAST analysis of amplicon sequences showed that local S. medanensis COI region had 99% maximum identity with S. medanensis nucleotide sequence (AY525568) available in the GenBank. As the phylogenetic tree generated indicated, COI sequences from this study were clustered with S. medanensis from Korea and the UK in one major clade, supported with high bootstrap value (> 85%). Results of the phylogenetic analysis of this COI gene were congruent with the morphological identification and provided strong support for a single clade of local S. medanensis.
    Matched MeSH terms: Mites/anatomy & histology; Mites/classification*; Mites/genetics
  16. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL
    Ticks Tick Borne Dis, 2018 07;9(5):1364-1371.
    PMID: 29886187 DOI: 10.1016/j.ttbdis.2018.05.015
    Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
    Matched MeSH terms: Mites/cytology; Mites/genetics
  17. NUR ATHIRAH ASRIF, KARIM NURQAMAREENA, YEE LING CHONG
    MyJurnal
    Birds are easily infested with ectoparasites due to their fitness, foraging behaviour, nesting cavities, micro- and macro-habitats. However, the status of ectoparasite infestation on birds in Sarawak is widely unknown. Rice field provides food resources to a variety of birds. This study was conducted to determine the species composition of ectoparasites from birds in a rice field at Kuap Village, Samarahan, Sarawak. A total of 69 birds consists of five species were caught from the rice field and the most common bird species found was the Chestnut Munia (Lonchura atricapilla). From these, 55 were found infested with ectoparasites with the infestation prevalence of 79.71%. A total of 2,513 ectoparasites from eight species were recovered from this study which comprised of six species of mites, one species of soft tick, and one species from the class Insecta. The most dominant ectoparasite species was mite namely, Nanopterodectes sp. with a total of 1,626 individuals. This baseline data on the ectoparasite composition and infestation of birds is important as some of the ectoparasites have the potential in transmitting zoonotic diseases to the farmers working at the rice fields in this region.
    Matched MeSH terms: Mites
  18. Srisonchai R, Enghoff H, Likhitrakarn N, Panha S
    Zookeys, 2018.
    PMID: 29875597 DOI: 10.3897/zookeys.761.24214
    The dragon millipede genus Desmoxytes s.l. is split into five genera, based on morphological characters and preliminary molecular phylogenetic analyses. The present article includes a review of Desmoxytes s.s., while future articles will deal with Hylomus Cook and Loomis, 1924 and three new genera which preliminarily are referred to as the 'acantherpestes', 'gigas', and 'spiny' groups. Diagnostic morphological characters of each group are discussed. Hylomus is resurrected as a valid genus and the following 33 species are assigned to it: H. asper (Attems, 1937), comb. n., H. cattienensis (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. cervarius (Attems, 1953), comb. n., H. cornutus (Zhang & Li, 1982), comb. n., H. draco Cook & Loomis, 1924, stat. rev., H. enghoffi (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. eupterygotus (Golovatch, Li, Liu & Geoffroy, 2012), comb. n., H. getuhensis (Liu, Golovatch & Tian, 2014), comb. n., H. grandis (Golovatch, VandenSpiegel & Semenyuk, 2016), comb. n., H. hostilis (Golovatch & Enghoff, 1994), comb. n., H. jeekeli (Golovatch & Enghoff, 1994), comb. n., H. lingulatus (Liu, Golovatch & Tian, 2014), comb. n., H. laticollis (Liu, Golovatch & Tian, 2016), comb. n., H. longispinus (Loksa, 1960), comb. n., H. lui (Golovatch, Li, Liu & Geoffroy, 2012), comb. n., H. minutuberculus (Zhang, 1986), comb. n., H. nodulosus (Liu, Golovatch & Tian, 2014), comb. n., H. parvulus (Liu, Golovatch & Tian, 2014), comb. n., H. phasmoides (Liu, Golovatch & Tian, 2016), comb. n., H. pilosus (Attems, 1937), comb. n., H. proximus (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. rhinoceros (Likhitrakarn, Golovatch & Panha, 2015), comb. n., H. rhinoparvus (Likhitrakarn, Golovatch & Panha, 2015), comb. n., H. scolopendroides (Golovatch, Geoffroy & Mauriès, 2010), comb. n., H. scutigeroides (Golovatch, Geoffroy & Mauriès, 2010), comb. n., H. similis (Liu, Golovatch & Tian, 2016), comb. n., H. simplex (Golovatch, VandenSpiegel & Semenyuk, 2016), comb. n., H. simplipodus (Liu, Golovatch & Tian, 2016), comb. n., H. specialis (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. spectabilis (Attems, 1937), comb. n., H. spinitergus (Liu, Golovatch & Tian, 2016), comb. n., H. spinissimus (Golovatch, Li, Liu & Geoffroy, 2012), comb. n. and H. variabilis (Liu, Golovatch & Tian, 2016), comb. n.Desmoxytes s.s. includes the following species: D. breviverpa Srisonchai, Enghoff & Panha, 2016; D. cervina (Pocock,1895); D. delfae (Jeekel, 1964); D. des Srisonchai, Enghoff & Panha, 2016; D. pinnasquali Srisonchai, Enghoff & Panha, 2016; D. planata (Pocock, 1895); D. purpurosea Enghoff, Sutcharit & Panha, 2007; D. takensis Srisonchai, Enghoff & Panha, 2016; D. taurina (Pocock, 1895); D. terae (Jeekel, 1964), all of which are re-described based mainly on type material. Two new synonyms are proposed: Desmoxytes pterygota Golovatch & Enghoff, 1994, syn. n. (= Desmoxytes cervina (Pocock, 1895)), Desmoxytes rubra Golovatch & Enghoff, 1994, syn. n. (= Desmoxytes delfae (Jeekel, 1964)). Six new species are described from Thailand: D. aurata Srisonchai, Enghoff & Panha, sp. n., D. corythosaurus Srisonchai, Enghoff & Panha, sp. n., D. euros Srisonchai, Enghoff & Panha, sp. n., D. flabella Srisonchai, Enghoff & Panha, sp. n., D. golovatchi Srisonchai, Enghoff & Panha, sp. n., D. octoconigera Srisonchai, Enghoff & Panha, sp. n., as well as one from Malaysia: D. perakensis Srisonchai, Enghoff & Panha, sp. n., and one from Myanmar: D. waepyanensis Srisonchai, Enghoff & Panha, sp. n. The species can mostly be easily distinguished by gonopod structure in combination with other external characters; some cases of particularly similar congeners are discussed. All species of Desmoxytes s.s. seem to be endemic to continental Southeast Asia (except the 'tramp' species D. planata). Some biological observations (relationship with mites, moulting) are recorded for the first time. Complete illustrations of external morphological characters, an identification key, and distribution maps of all species are provided.
    Matched MeSH terms: Mites
  19. Magaji G. Usman, Tijjani Ahmadu, Adamu Jibrin Nayaya, Aisha M. Dodo
    MyJurnal
    Naturally, plant habitats are exposed to several potential effects of biotic and different abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to influence disease development. In response to the stress effect, plants defend themselves by bearing some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms through which plants exhibit disease resistance. Several findings specifically on phytoalexins have widen the understanding in the fields of plant biochemistry and molecular biology. However, this review reports the interaction of toxins and phytoalexins in plant-pathogen cycle, research progress on the association of phytoalexins with plant disease resistance as well as the role of the phytoalexins in plant disease control.
    Matched MeSH terms: Mites
  20. Brückner A, Klompen H, Bruce AI, Hashim R, von Beeren C
    PeerJ, 2017;5:e3870.
    PMID: 29038753 DOI: 10.7717/peerj.3870
    A great variety of parasites and parasitoids exploit ant societies. Among them are the Mesostigmata mites, a particularly common and diverse group of ant-associated arthropods. While parasitism is ubiquitous in Mesostigmata, parasitoidism has only been described in the genus Macrodinychus. Yet information about the basic biology of most Macrodinychus species is lacking. Out of 24 formally described species, information about basic life-history traits is only available for three species. Here we formally describe two new Macrodinychus species, i.e. Macrodinychus hilpertae and Macrodinychus derbyensis. In both species, immature stages developed as ecto-parasitoids on ant pupae of the South-East Asian army ant Leptogenys distinguenda. By piercing the developing ant with their chelicera, the mites apparently suck ant hemolymph, ultimately killing host individuals. We compare infection rates among all studied Macrodinychus species and discuss possible host countermeasures against parasitoidism. The cryptic lifestyle of living inside ant nests has certainly hampered the scientific discovery of Macrodinychus mites and we expect that many more macrodinychid species await scientific discovery and description.
    Matched MeSH terms: Mites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links